
CH10	Notes	“Updating,	Showing,	and	Deleting	Users”	
	
This	chapter	is	about	finishing	the	REST	actions	for	the	Users	resource,	and	adding	
administrator	pages/rights	to	allow	the	creation,	destruction,	and	editing	of	users.	
	
10.1	Updating	Users	
First,	we	created	a	new	git	branch:	
	 git	checkout	–b	updating-users	
	
First	we	added	a	edit	action	definition	to	the	users_controller.rb	and	called	the	current	
user	by	saying		
	 @user	=	User.find(params[:id])
We	created	/views/users/edit.html.erb	to	show	an	edit	form	at	
www.sample_app.com/user/1/edit/	
	
NOTE:	Use	hidden	input	field	to	send	PATCH	requests	because	web	browsers	cannot	
facilitate.		Rails	uses	.new_record?	to	question	whether	the	form	should	send	POST	or	
PATCH.	
	
Handle	unsuccessful	edits	like	unsuccessful	signups	by	using	a	new	method	in	the	
users_controller.rb,	add	code	to	update	the	data	of	a	successful	user	edit	submission	or	
render	the	edit	page	again	with	error	messages:	
	
def	update	
				@user	=	User.find(params[:id])	
				if	@user.update_attributes(user_params)	
						#	Handle	a	successful	update.	
				else	
						render	'edit'	
				end	
		end	
	
Then	we	created	a	new	integration	test	to	test	for	unsuccessful	edits.	
	
Handling	successful	edits	was	next…Gravatar	handles	image	edits,	so	that	is	done!		Then	
added	a	flash	success	message	to	the	‘#Handle	successful	update”	comment	section	of	
code	listed	above	(adding	a	test	for	a	successful	edit	and	flash	message	first,	to	perform	
TDD).	
	
	
	
	
	

10.2	Authorization	
	
Although	the	user	update/edit	functions	are	complete,	anyone	is	allowed	to	use	them	
right	now,	on	any	other	user	–	we	need	to	add	authorization	to	restrict	certain	functions	
on	our	site	to	only	some	users.	
	
BEFORE_ACTIONs	
A	before_action	added	to	a	controller	gets	run	before	a	listed	defined	method,	for	
example	in:	
	 before_action	:logged_in_user,	only:	[:edit,	:update]	
the	method	logged_in_user	will	get	called	before	the	methods	edit	or	update	are	
called.	(If	no	only:	parameter	is	listed,	the	default	of	a	before_action	is	to	be	called	
before	every	method	in	the	controller)	
	
We	then	added	a	before_action	and	Users	controller	method	called	correct_user	to	
redirect	to	the	root	url	unless	the	current	user	is	only	trying	to	edit	their	own	user	
information.	
	
FRIENDLY	FORWARDING	
After	a	non-logged	in	user	receives	an	error	and	successfully	logs	in,	they	are	always	
redirected	to	their	profile	page.		Friendly	forwarding	saves	the	location	of	where	they	
were	trying	to	go,	and	then	forwards	them	on	to	that	destination	after	a	successful	
login.	
To	do	this	we	add	the	following	code	to	sessions_helper.rb:	
	
#	Redirects	to	stored	location	(or	to	the	default).	
		def	redirect_back_or(default)	
				redirect_to(session[:forwarding_url]	||	default)	
				session.delete(:forwarding_url)	
		end	
	
		#	Stores	the	URL	trying	to	be	accessed.	
		def	store_location	
				session[:forwarding_url]	=	request.original_url	if	request.get?	
		end	
	
This	store_location	method	stores	the	original	destination	in	forwarding_url,	while	the	
redirect_back_or	method	sends	the	user	to	the	original	destination	or	to	the	action	
default	url.	
	
10.3	Showing	All	Users	
First	job	was	to	add	an	index	method	to	users_controller.rb	and	check	to	be	sure	users	
were	logged	in	before	accessing	the	index	method.	

Then	we	added	@users	=	User.all	to	the	users_controller	index	method,	calling	all	users	
and	storing	in	a	variable.		We	made	a	/users/index.html.erb	view	to	iterate	through	each	
user	in	@users	and	show	their	gravatar	and	name	with	a	link	to	their	‘show’	page.		We	
then	fixed	the	stub	‘Users’	link	in	the	navigation	to	go	to	the	users/index	view.	
	
SAMPLE	USERS	
We	added	sample	users	by	including	faker	in	our	Gemfile.		Then	add	generation	code	to	
db/seeds.rb	to	generate	100	users.		Then	run	rails	db:migrate:reset	and		rails	db:seed	to	
add	generated	users	to	the	database.	
	
PAGINATION	
To	start	pagination,	add	will_paginate	and	bootstrap-will_paginate	to	the	Gemfile.		
Then	add	<%=	will_paginate	%>	code	to	user	views	to	show	pagination	links	on	the	
page.		Add	paginate	method	to	list	users	in	the	controller	like	this:	

def	index	
					 	 @users	=	User.paginate(page:	params[:page])	
			 end	
	
We	then	generated	a	users_indext_test	to	test	the	users	index	page.		NOTE:	you	can	
also	generate	test	users	using	ruby	code	in	the	fixtures/users.yml	file.	
	
10.4	Deleting	Users	
First	we	added	an	admin	Boolean	attribute	to	the	users	table:	
	 rails	generate	migration	add_admin_to_users	admin:Boolean	
Then	update	the	[timestamp]add_admin_to_users.rb	migration	file	to	add	a	
default:false	clause,	making	the	default	value	of	the	admin	attribute	false	(0).	
	
We	updated	our	seed	file	to	add	one	user	with	admin	attribute	set	to	true,	and	ran	rails	
db:migrate:reset	and	rails	db:seed	again.		Then	created	a	test	to	make	sure	that	a	user	
could	not	issue	a	PATCH	command	to	update	their	admin	Boolean	over	the	web.	
	
DESTROY	ACTION	
We	first	updated	the	_users	partial	to	show	delete	links	on	the	users	index	view	if	the	
logged-in	user	is	an	admin.		Then	we	defined	a	destroy	method	in	the	users	controller	
like	this:	

def	destroy	
			 				User.find(params[:id]).destroy	
				 				flash[:success]	=	"User	deleted"	
		 				redirect_to	users_url	

end	
Making	sure	to	put	the	method	in	the	:logged_in_user	before_action,	so	that	a	user	
must	be	logged	in	before	they	can	perform	the	destroy	method.		Then	for	more	security,	

we	added	an	:admin_user	before_action	so	only	admins	can	perform	the	destroy	
method:	
	 before_action	:admin_user,					only:	:destroy	
	
Then	we	wrote	tests	to	verify	this	important	security	functionality.	
	
	
10.5	Conclusion	
What	we	learned:	PATCH	actions,	strong	parameters’	protection,	before	filters,	friendly	
forwarding,	rails	db:seed,	using	embedded	ruby	inside	fixtures	to	generate	users.		We	
finished	the	user	edit,	update,	index,	and	destroy	actions.	
	
Git	add,	commit,	checkout,	merge,	push!	
NOTE:	Make	sure	to	run	rails	db:migrate	and	rails	db:seed	on	heroku:	

$ rails test
$ git push heroku
$ heroku pg:reset DATABASE
$ heroku run rails db:migrate
$ heroku run rails db:seed
$ heroku restart

	
	

