
We are going to enhance the login system, adding a remember functionality via permanent
cookies

-

This functionality is optional-

Remember users' login state even after opening/closing browser using a checkbox-
Create a branch (git checkout -b advanced-login)-

Remember Me?

The Rails session remembers only during the browser session-

Via packet sniffing cookies via unsecure connections => Resolve with HTTPS (Section
7.5)

Compromising a database => Store hash digest of the token
XSS => Rails MAGIC via escapes
Physical machine access => Token refresh on login/logout

Vulnerable to session hijacking (stealing information)○
Need to create a persistent session via cookies method-

Add remember_digest to User model (rails generate migration
add_remember_digest_to_users remember_digest:string) - then rails db:migrate

○

Using urlsafe_base64 from SecureRandom for token generation○

Method: New_token
Attribute: remember_token
Method: remember_token

We'll need to add methods and attributes○

The use of self. Ensures that assignment sets the attribute○

Code Changes-

Time: cookies[:remember_token] = { value: remember_token,
 expires: 20.years.from_now.utc }
Permanent: cookies.permanent[:remember_token] = remember_token
Store similar to that of session expect we can add a method of .signed to encrypt
Cookies.signed will decrypt to receive as well

Use cookies method to store a value and an expires date○

The Bcrypt will redefined to see if the digest is equal to the token via is_password?
Tricks of checking○

The attr_accessor :remember_token is LOCAL and is not the sdame as the
authenticated?(remember_token)

○

With user.remember we can store the encrypted session information as a permanent cookie-

If remembered - Use cookies.signed○
Otherwise, use find_by(id: user_id)○

Logic fork for remembered-

if (user_id = session[:user_id])○
This is NOT a CHECK but an assignment○
“If session of user id exists (while setting user id to session of user id)…”○

Crazy Code***-

Need to a some methods: user.forget; opposite of user.remember
Forgetting Users-

Advanced Login
Tuesday, September 27, 2016 9:07 PM

 Chapter 9 Page 1

Need to a some methods: user.forget; opposite of user.remember○

Multiple user sessions; multiple logouts○

Add checks to see if the user is logged in prior to calling logout
Need to clear out the remember digest and have authenticated? Return false

Need to adjust current_user method to handle this○

Bugs!-

Need to add a checkbox and a label to help set up the magic-
Add the necessary HTML and CSS-
The dig deeper we'll need to update the params hash for forms with the new values and handle
those within the Session Helper method, create

-

Update The GUI!

Tricky to test remember functions, but planning helps-
In this context, params[:session][:remember_me] is either ’0’ or ’1’, both of which are
true in a boolean context, so the resulting expression is always true, and the application acts
as if the checkbox is always checked. This is exactly the kind of error a test can catch.

From <https://www.railstutorial.org/book/advanced_login>

We'll need to tie up our test_helper.rb and add a log_in_as method to check specific users-
And add an ActionDispatch off to integration to login as a specific user-

Remember Tests

Cookies['rember_token']○
Cookies method does not work with symbols as keys 0 need to work with strings-

The relevant branch in the current_user method is not being tested right now.○

Allows for a pass if not covered, otherwise, trips an error
Easy fix: Raise an exception in the untested block of code○

It's hard to test persistent sessions○
Test out current_user method; directly call out the method on testing○

Testing the branch-

Heroku maintenance: on/off○
This will help with changes during maintenance, disabling the site○

Top: Switch heroku to maintenance mode via-
Deploying

 Chapter 9 Page 2

