
Chapter 6 Notes: Modelling Users
Authentication:

 Prebuilt solutions: Clearance, Authlogic, Devise, and CanCan, OpenID, OAuth

 Custom Solution—often the better option, since pre-built solutions require a significant amount

of customization to begin with and are often “black-boxes” in terms of how they work

6.1 User model
User class built in console lacked persistence

$ rails generate model User name:string email:string: creates a model with name and email attributes

NOTE: model names are singular: a Users controller, but a User model.

Creates a new file called a migration

 provides a way to alter the structure of the database incrementally, so that our data model can

adapt to changing requirements

 t.timestamps, command that creates two columns called created at and updated at, which are

timestamps that automatically record when a given row is created and updated

$ rails db:migrate

 creates a file called db/development.sqlite3

 to see the structure of the database first download the database file to the local disk, as shown

in Figure 6.5 then open development.sqlite3 with DB Browser for SQLite

Using a test console

$ rails console --sandbox creates a new console where all changes will be rolled back upon exiting
Note: the console will automatically load the current Rails environment (including models)

Commands

User.create Combines assigning values and save function

User.destroy Undoes User.create

User.find(1) Finds record with that ID

User.find_by(email: mdoucette@example.edu) Will search User table for specified attribute(s)

User.first Will return first item in User table

User.all Will return all users

User.reload Loads the object from the database; overwriting
what is in memory

User.name = “NewUser” Update a single attribute

User.update_attribute(name: “NewUser”, email:
“NewUser@Example.com”

Update multiple attributes

Note: both create and destroy return an object and will exist in memory after the command is executed

6.2 User Validations
How to validate presence, length, format and uniqueness as well as using confirmation.

mailto:mdoucette@noctrl.edu

1. Create a passing test – to know that the object itself is valid

a. Define @user using the special def setup method—which automatically gets run before

each test

2. Next we will use tests to substitute attributes with invalid values and test whether or not @user

is valid or not

a. Uses "a" * 244 to repeat a character that number of times

b. Regex uses pattern matching for numbers and strings and is extremely useful to know,

but there are entire books written on this…. There is a good breakdown in Table 6.1

i. Rublar.com is a great way to test regular expressions

c. Forcing unique values in Active Record doesn’t guarantee there won’t be duplicates in

database, if two identical records come in at the same time– this has to be done at the

database level

Editing the database

Add an index and enforce unique values for emails at the database level.

rails generate migration add_index_to_users_email

This will create a migration file that we can edit to create an index (to make searching faster) and

enforce unique values. To finalize changes run: $ rails db:migrate

Note: the fixtures file that was generated automatically ($ rails generate model User name:string

email:string) will now need to be cleared out since they are not unique.

To alter a record before saving, update model with: before_save { self.email = email.downcase }

6.3 Adding a secure password
Add has_secure_password to User model which grants the ability to:

 Save a password_digest

 Use password and password_confirmation attributes

 And authenticate whether a password is correct

1. Create a new migration file to add password_digest column to database

$ rails generate migration add_password_digest_to_users

password_digest:string

2. Update app/models/user.rb to include:

a. has_secure_password

b. validates :password, length: { minimum: 6 }

3. Note: User_test will now fail

a. Add a password and password_confirmation for @user in the def setup

b. You will also need to set up test to check a minimum password length

 @user.password = @user.password_confirmation = "a" * 5

 assert_not @user.valid?

