
CH5	Notes	“Filling	In	the	Layout”	
	
This	chapter	is	about	adding	CSS	style	sheets	to	our	Sample	App	and	using	Bootstrap	–	
an	open	source	web	design	framework.		Continuing	on	with	sample_app	
	
5.1	Adding	some	structure	
First,	we	created	a	new	git	branch:	
	 git	checkout	–b	filling-in-layout	
	
Added	additional	HTML	to	the	site	layout	file	/app/views/layout/application.html.erb	:	

• Internet	Explorer	HTML5	shim	
• classes	(have	special	meaning	to	Bootstrap)	

o nav	
o navbar-nav	
o navbar-right	
o container	
o navbar	
o navbar-fixed-top	
o navbar-inverse	

• Use	#	for	a	stub	link	–	a	placeholder	link	
Edited	other	views	to	add	more	HTML	and	CSS	classes	(to	aid	Bootstrap)	
Add	images	to	app/assets/images	directory	

• image_tag	helper	pulls	images	to	be	used	on	pages	
• Paid	cat	tax	

	
BOOTSTRAP	(custom	CSS)	

• Open	source	from	Twitter	
• Makes	web	pages	responsive	(able	to	adjust	to	changing	screen	size)	
• Added	bootstrap-sass	gem	to	gemfile	(don’t	forget	bundle	install!)	
• Create	custom	CSS	file	at	/app/assets/stylesheets/custom.scss	(NOTE:	scss	

extension	means	sassy	css	file)	
o use	@import	“bootstrap-sprockets”;	and	@import	“bootstrap”;	to	include	

Bootstrap	css	framework	in	the	custom.scss	file	
o Add	universal	styling	elements	to	custom.scss	too	

	
PARTIALS	
Naming	convention	for	partials:	_partialname.html.erb	
Use	render	to	cause	code	from	partial	to	be	inserted	into	page		

• <%=	render	'layouts/header'	%>	
	
	
	

5.2	Sass	and	the	Asset	Pipeline	
Assets:	

• app/assets:	assets	specific	to	the	present	application	
• lib/assets:	assets	for	libraries	written	by	your	dev	team	
• vendor/assets:	assets	from	third-party	vendors	

Asset	files	in	/images,	/javascript,	and	/stylesheets	get	combined	into	application.css	
and	application.js,	minified	into	quick-loading	browser	files.	
	
Syntactically	Awesome	Style	Sheets	(Sass)	
	 Sass	allows	nesting	and	variables	in	css	files	

$variable_name:	#value;	
	 	 	
	
5.3	Layout	Links	
Changed	routes.rb	file	from:	get	‘static_pages/help’	to	use	named	routes	by	saying:	

get	‘/help’,	to:	‘static_pages#help’	
This	allows	us	to	use	Rails	functionality	_path	and	_url	in	HTML	pages	like:	
	 <%=	link_to	“About”,	about_path	%>	
Changed	stub	links	(#)	to	named	route	links	in	header	and	footer	partials	
Created	tests	for	layout	links	
	
	
5.4	User	Signup:	A	First	Step	
rails	generate	controller	Users	new	to	create	new	controller	Users	and	
users/new.html.erb	view	
	
Changed	routes.rb	to	get	‘/signup’	to:	‘users#new’	(this	adds	the	named	route)	
	
Changed	home.html.erb	to	use	signup_path	for	the	signup	button:	
	 <%-	link_to	“Sign	up	now!”,	signup_path,	class:	“btn	btn-lg	btn-primary”%>		
	
5.5	Conclusion	
What	we	learned:	HTML5,	header,	footer,	body	layout;	rails	partials;	CSS	classes	and	ids;	
Bootstrap;	Sass	and	asset	pipeline;	named	routes	and	custom	routing	rules.	
	
NOTE:	bundle	install	before	running	rails	test	after	git	merge!	
	

