
Chapter 4 Rails-flavored Ruby

Create a separate topic branch to keep our changes.

 $ git checkout -b rails-flavored-ruby

Build-in helper

Use the built-in Rails function stylesheet_link_tag to include application.css for all media types:

<%= stylesheet_link_tag 'application', media: 'all', 'data-turbolinks-track': 'reload' %>

Custom helpers

 In addition to coming equipped with a large number of built-in functions for use in the views, Rails also allows the

creation of new ones. Such functions are called helpers.

 full_title helper to solve the problem of a missing page title (L4.2)

Strings and methods

Rails console - a command-line program for interacting with Rails applications.

Include recommended irb configuration parameters:

 $ nano ~/.irbrc #open a file

 Fill it the the contents:

IRB.conf[:PROMPT_MODE] = :SIMPLE

 IRB.conf[:AUTO_INDENT_MODE] = false # ~/.irbrc

 Exit nano and save changes: Ctrl+X

Star/Exit console:

 $ rails console

 Ctrl+C, Ctrl+D exit console.

Comments starts with the pound sign: #

Strings

 String literals are created using the ": “foo”

 Concatenate strings with the +: “foo” + “bar” # also works with single quoted strings: ‘foo’ + ‘bar’

 Another way to build up strings is via interpolation using the special syntax #{}: fn=”Michael”; “#{fn} Hartl” #but

not works with single quoted strings

 Printing cmd: puts # returns literally nothing: nil

 nil is a special Ruby value for “nothing at all”, nil object is special, in that it is the only Ruby object that is false in a

boolean context, apart from false itself.

 print command prints the raw string without the extra line: print “foo”

 Ruby won’t interpolate into single-quoted strings

 Benefits of single quoted strings: they are truly literal, containing exactly the characters you type

Objects and message passing

 Everything in Ruby, including strings and even nil, is an object.

 String methods: .length; .empty?; .nil; .include?(“string”); .downcase; .upcase

 &&, ||, !

 if…else…end; if…elsif…elsif…end

 convert virtually any object to a string: nil.to_s

 unless keyword:

>> string = "foobar"

>> puts "The string '#{string}' is nonempty." unless string.empty?

Methods

 Ruby functions have an implicit return, meaning they return the last statement evaluated

 Ruby also has an explicit return option

Arrays and ranges

 Split a string into an array: “foo bar baz”.split; “fooxbarxbazx”.split(‘x’)

 Ruby uses square brackets for array access. The first element of an array in the array has index 0. Indices can even be

negative: a = [42, 8, 17]; a[0] = 42; a[-1] = 17;

 Ruby offers synonyms for some commonly accessed elements: a.first = 42; a.last = 17

 Array methods (a will remain the same): a.length; a.empty?; a.include?(42); a.sort; a.reverse; a.shuffle

 To mutate an array, use the corresponding “bang” method: a.sort!

 Add to arrays: a.push(6); a << 7; a << “foo” << “bar”

 Ruby arrays can contain a mixture of different types

 Join an array: a.join; a.join(‘,’)

 Use %w to make a string array: sa = %w[foo bar baz quux]

 Ranges to array, work with numbers and characters: (0..9).to_a; ('a'..'e').to_a

 Ranges are useful for pulling out array elements: sa[0..2] => [“foo”, “bar”, “baz”]

 (‘a’..’z’).to_a.reverse

Blocks

 Both arrays and ranges respond to a host of methods that accept blocks.

 The vertical bars around the variable name in |i| are Ruby syntax for a block variable

 Use curly braces only for short one-line blocks and the do..end syntax for longer one-liners and for multi-line blocks

 The map method returns the result of applying the given block to each element in the array or range: >> %w[a b c].map

{ |char| char.upcase } => ["A", "B", "C"]

 The block inside map involves calling a particular method on the block variable, and in this case there’s a commonly

used shorthand called “symbol-to-proc”: >> %w[A B C].map(&:downcase) => ["a", "b", "c"]

Hashes and symbols

 Hashes are essentially arrays that aren’t limited to integer indices. Hash indices, or keys, can be almost any object.

 Hashes are indicated with curly braces containing key-value pairs; a pair of braces with no key-value pairs—i.e., {}—

is an empty hash.

 Although hashes resemble arrays, one important difference is that hashes don’t generally guarantee keeping their

elements in a particular order. If order matters, use an array.

 It’s easy to use a literal representation with keys and values separated by =>, called a “hashrocket”

>> user = { "first_name" => "Michael", "last_name" => "Hartl" }

 Symbols look kind of like strings, but prefixed with a colon instead of surrounded by quotes. :symbol_name

 Hashes-of-hashes, or nested hashes: params[:user] = { name: "Michael Hartl", email: "mhartl@example.com" }

 each method: a hash iterates through the hash one key-value pair at a time

 inspect method: returns a string with a literal representation of the object it’s called on

def method_name(para_name=’’) #contains a default argument

 …

end

CSS revisited

 Parentheses on function calls are optional

 When hashes are the last argument in a function call, the curly braces are optional.

 <%= %> for inserting results

Ruby classes

 Constructors

 trace back the class hierarchy: s.class.superclass

Modifying build-in classes

 Ruby classes can be opened and modified, like the String class

To finish:

 $ git add -A

 $ git commit -am "Add a full_title helper"

 $ git checkout master

 $ git merge rails-flavored-ruby

 $ rails test

 $ git push

 $ git push heroku

