
Mark Prucha

Chapter 8 Notes Login, Log Out

 8.1 Sessions
o 8.1.1 Sessions Controller

 HTTP is stateless – meaning it has no way to remember a user’s identity from
page to page.

 To combat this, we must use sessions

 create sessions Controller

 Sessions follow REST architecture

 get 'login' => 'sessions#new'

 post 'login' => 'sessions#create'

 delete 'logout' => 'sessions#destroy'

o 8.1.2 Login Form

 Use form_for (:session, url: login_path)
o 8.1.3 Finding and Authenticating a User

 :session is the key to a nested params hash, and is also a hash itself.
 So params[:session] is equivalent to:

{session:{password: "foobar", email: "user@example.com" }}

 Remember, when we post to the login path, we create the session with user
information stored in the session. To authenticate a user, we must access the
user from the database and compare the information of the user with the
information entered on the login form.

 We access the user from the database by email address using the find_by
method

 We then use the authenticate method to make sure the user from the database
has the same password as the user logging in

LISTING 8.5

class SessionsController < ApplicationController

 def new

 end

 def create

 user = User.find_by(email: params[:session][:email].downcase)

 if user && user.authenticate(params[:session][:password])

 # Log the user in and redirect to the user's show page.

 else

 # Create an error message.

 render 'new'

 end

 end

 def destroy

 end

end

o 8.1.4 Render with Flash Message
 If the password is incorrect, we need an error message. So we use flash object.

flash [:danger] = ‘invalid email/password combination’

 Flash object is already styled via CSS from previous chapter.
 Problem is flash message persists for one request and re-rendering the page (as

we are doing when the login fails) does not count as a request.

 So flash message appears on the next page accessed after the re-
rendered login form. That page then counts as the request.

o 8.1.5 Flash Test
 To fix the flash issue we use flash.now, which is a variant of flash, used to

display a flash message specifically on re-rendered pages.
 Can develop a test to make sure flash appears only on re-rendered login page as

in Listing 8.7

 8.2 Logging In
o 8.2.1 log_in Method

 Temporary session cookie used. When session controller is created, so is
SessionHelper. The helper is a module where you can put further methods for
sessions such as the log_in method written below.

 # Logs in the given user.

 def log_in(user)

 session[:user_id] = user.id

 end

o 8.2.2 Current User
 Create current_user method so we can keep track of the current user’s

information on subsequent pages without having to constantly access the
database. Can do:

 def current_user

if @current_user.nil?

 @current_user = User.find_by(id: session[:user_id])

else

 @current_user

end

end

 In Ruby, you can also use ||=

i.e. @current_user ||= User.find_by(id: session[:user_id])

 ||= is like a boolean version of +=

 If the current_user is null then set it to
 User.find_by(id: session[:user_id])

o Otherwise just return the current_user

o 8.2.3 Changing the Layout Links
 Bootstrap stuff to change links depending on whether or not a user is logged in.
 For example if a user is logged in, you’re going to want a logout link.
 Need a logged_in boolean method to determine if there is a user logged in.

 Can determine logged_in by finding out if current_user is null. (Listing
8.15)

o 8.2.4 Testing Layout Changes
 Can use fixtures to create hypothetical user data in order to test login.
 In login tests, we define a setup method which refers to the fixture file (see

Listing 8.20)

 New test methods used:

 assert_redirected_to @user

 follow_redirect!

 assert_select "a[href=?]", login_path, count: 0


o 8.2.5 Login Upon Signup

 Call the log_in method when creating the user, so that once a new user is
created, he or she will be logged in (Listing 8.22).

 8.3 Logging Out
o Create log_out method in sessions helper which deletes the user id from the session and

sets the current user to null (See below).

 # Logs out the current user.

 def log_out

 session.delete(:user_id)

 @current_user = nil

 end

o Define destroy in the sessions controller. It calls the log_out method and redirects to the
home page.

 def destroy

 log_out

 redirect_to root_url

 end

