
Mark Prucha

Chapter 8 Notes Login, Log Out

 8.1 Sessions
o 8.1.1 Sessions Controller

 HTTP is stateless – meaning it has no way to remember a user’s identity from
page to page.

 To combat this, we must use sessions

 create sessions Controller

 Sessions follow REST architecture

 get 'login' => 'sessions#new'

 post 'login' => 'sessions#create'

 delete 'logout' => 'sessions#destroy'

o 8.1.2 Login Form

 Use form_for (:session, url: login_path)
o 8.1.3 Finding and Authenticating a User

 :session is the key to a nested params hash, and is also a hash itself.
 So params[:session] is equivalent to:

{session:{password: "foobar", email: "user@example.com" }}

 Remember, when we post to the login path, we create the session with user
information stored in the session. To authenticate a user, we must access the
user from the database and compare the information of the user with the
information entered on the login form.

 We access the user from the database by email address using the find_by
method

 We then use the authenticate method to make sure the user from the database
has the same password as the user logging in

LISTING 8.5

class SessionsController < ApplicationController

 def new

 end

 def create

 user = User.find_by(email: params[:session][:email].downcase)

 if user && user.authenticate(params[:session][:password])

 # Log the user in and redirect to the user's show page.

 else

 # Create an error message.

 render 'new'

 end

 end

 def destroy

 end

end

o 8.1.4 Render with Flash Message
 If the password is incorrect, we need an error message. So we use flash object.

flash [:danger] = ‘invalid email/password combination’

 Flash object is already styled via CSS from previous chapter.
 Problem is flash message persists for one request and re-rendering the page (as

we are doing when the login fails) does not count as a request.

 So flash message appears on the next page accessed after the re-
rendered login form. That page then counts as the request.

o 8.1.5 Flash Test
 To fix the flash issue we use flash.now, which is a variant of flash, used to

display a flash message specifically on re-rendered pages.
 Can develop a test to make sure flash appears only on re-rendered login page as

in Listing 8.7

 8.2 Logging In
o 8.2.1 log_in Method

 Temporary session cookie used. When session controller is created, so is
SessionHelper. The helper is a module where you can put further methods for
sessions such as the log_in method written below.

 # Logs in the given user.

 def log_in(user)

 session[:user_id] = user.id

 end

o 8.2.2 Current User
 Create current_user method so we can keep track of the current user’s

information on subsequent pages without having to constantly access the
database. Can do:

 def current_user

if @current_user.nil?

 @current_user = User.find_by(id: session[:user_id])

else

 @current_user

end

end

 In Ruby, you can also use ||=

i.e. @current_user ||= User.find_by(id: session[:user_id])

 ||= is like a boolean version of +=

 If the current_user is null then set it to
 User.find_by(id: session[:user_id])

o Otherwise just return the current_user

o 8.2.3 Changing the Layout Links
 Bootstrap stuff to change links depending on whether or not a user is logged in.
 For example if a user is logged in, you’re going to want a logout link.
 Need a logged_in boolean method to determine if there is a user logged in.

 Can determine logged_in by finding out if current_user is null. (Listing
8.15)

o 8.2.4 Testing Layout Changes
 Can use fixtures to create hypothetical user data in order to test login.
 In login tests, we define a setup method which refers to the fixture file (see

Listing 8.20)

 New test methods used:

 assert_redirected_to @user

 follow_redirect!

 assert_select "a[href=?]", login_path, count: 0

o 8.2.5 Login Upon Signup

 Call the log_in method when creating the user, so that once a new user is
created, he or she will be logged in (Listing 8.22).

 8.3 Logging Out
o Create log_out method in sessions helper which deletes the user id from the session and

sets the current user to null (See below).

 # Logs out the current user.

 def log_out

 session.delete(:user_id)

 @current_user = nil

 end

o Define destroy in the sessions controller. It calls the log_out method and redirects to the
home page.

 def destroy

 log_out

 redirect_to root_url

 end

