
Chapter 6 Overview:

Though there are many systems for user authentication, it’s usually better to write your own.
Need to know how it works and what’s going on, can customize it to your personal needs

 Migrations allow us to modify our application’s data model.
o Default data structure is the model, default library for database interactions is

Active Record (which you can use without SQL)
o Migrations (with Active Record [model library]) allow persistence and data

definitions to be written in Ruby
o rails generate model to create the user model (similar to generate controller)

 Generates Model .rb file (user.rb) – inherits from ActiveRecord::Base
 Generates Migration file – alter data structure to adapt to changes in code

 Identified with timestamp to avoid collision issues
 Creates a table with the specified data (Users table has name and

email columns) and id, created_at, and updated_at columns
 Rails naming convention: Model is singular (instance of object)

while database is plural (will have many models/objects)
o bundle exec rake db:migrate – migrating up command, creates SQLite database
o bundle exec rake db:rollback – Roll back database/migrate down/undo migrate

 Active Record comes with a large number of methods for creating and manipulating data
models.

o Can make edits in sandbox – Rolls back on exit, undo database changes!! This
does lock db, so can’t do migrates or rollbacks until all sandboxes are closed
 User.new[(name: “”, email: “”)] – create new user [void unless

specified], return object
 valid? – validate entry, return bool
 save – save user to database, sets the id and timestamps, return bool
 access attribute by name (user.name/email/id)
 .create will create and save entry, return object
 .destroy destroys object (but still exists in memory), return object
 .find(id) – find user in database, return object or RecordNotFound
 .find_by(attr: “attribute_name”) – return object
 .first – return first entry; .all – return all members as

ActiveRecord::Relation object (aka an array)
 Edit a record by setting the attribute (user.email = “b@g.com”) and .save

 This will update .updated_at to current time stamp
 Undo an edit by calling .reload (user.reload.email) BEFORE SAVING
 .update_attributes() updates multiple attributes, return boolean
 .update_attribute() bypasses restrictions for save

 Active Record validations allow us to place constraints on the data in our models.

 Common validations include presence, length, and format.
o Listing 6.5 for code
o bundle exec rake test:models will test the models
o to add presence validation, add the following:

 add following test to test/models/user_test.rb
test "name should be present" do
@user.name = " "
assert_not @user.valid?

end

 add validates :name, presence: true to app/models/user.rb
o .errors.full_messages – sandbox call, use to see why you can’t save/valid object
o Validate length with test “___ should not be too long” (Listing 6.14) and set

length (Listing 6.16)
 (user_test.rb) @user.name = “a” * 51 //string multiplication, 51 char
 (user.rb) validates :name, presence: true, length: { maximum: 50 }

o Validate format (like an email) by adding different email styles to user_test.rb
(see Listing 6.18)
 Can add a custom error message with assert @user.valid?,

"#{valid_address.inspect} should be valid"
 Need to add VALID_EMAIL_REGEX to user.rb (Listing 6.21)

 Regular expressions are cryptic but powerful.
o Set a regular expression to validate the email (table 6.1 in section 6.2.4)
o VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i (explained in table 6.1)
o rubular.com is a regular expression editor – has a quick reference guide at bottom

and has an error check in it so awesome resource!

 Defining a database index improves lookup efficiency while allowing enforcement of
uniqueness at the database level.

o Add test "email addresses should be unique" to user_test.rb and uniqueness:
{case_sensative: false} to user.rb file

o Due to threading/multiple processes happening at once, this is not enough. If an
email is sent twice (hit submit twice), they will be checked against the database
which will not have either of them yet and accept them

o rails generate migration add_index_to_users_email to add structure (index) to
existing model, it won’t be predefined (rails isn’t sure what your changing) so add
add_index :users, :email, unique: true to new db/migrate/[file]
 code adds an index to email col of users table, sets it to be unique
 Make sure to migrate db!

o Now empty test/fixtures/users.yml file – it doesn’t think emails should be unique,
we’ll get back to it in Ch 8 (fixatures are a way of organizing data that you want
to test against)

o Add before_save { self.email = email.downcase } to user.rb to take care of case
sensitive issues

 We can add a secure password to a model using the built-in has_secure_password

method.
o Save a hashed version of the password in the database

 Applying an irreversible hash function (mapping function) to input data
o We’re taking a password, hashing it, comparing it to hashed password in db
o has_secure_password – (in user.rb) rails method that saves hashed

password_digest to db, makes password and password_confirmation upon object
creation and requires them to match, and an authenticate boolean method to
confirm password on login
 Need to add password_digest for this to work: rails generate migration

add_password_digest_to_users password_digest:string
 Since we gave rails our new variable, it auto generates the change

function, just have to migrate the database
 Need bcrypt gem for a good hash function, add gem and bundle install

o Add password and password_confirmation fields to @user in user_test.rb
o Add test "password should be present (nonblank)" and test "password should

have a minimum length" to user_test.rb (Listing 6.38)
o validates :password, presence: true, length: { minimum: 6 } to user.rb to validate

user

One last comment: make sure to call heroku run rake db:migrate in console since we’re using a
database now

