
Note 29 Feb 2014

Appx C - Assembly language programming

When reading Appendix C, remember! 
● Our gcc syntax is different than the text.
● This is an old Intel 8088 ISA, not our modern Intel architecture

I will highlight the important parts of Appx C in these notes.

C.1 Overview
Definitions: mnemonics, labels, pseudo-instructions, assembler

C.2 The 8088 processor
Definitions: registers, program counter, code segment
Processor cycle is similar to our Ch 4 favorite, Mic-1:

1. Fetch assembly instr
2. PC++
3. Decode instr
4. Read data from memory or registers
5. Perform instr (datapath!)
6. Store results in memory or registers
7. Goto step 1

The 8088 registers:



Note 29 Feb 2014

C.3 Memory and addressing
4 memory segments:

● Code segment - your program
● Data segment - constants and global variables
● Stack segment - the stack for local variables and function parameters
● Extra segment - used as needed

The starting address of each segment resides in a register. Addresses are offsets from there.

Addressing modes: register, data segment, stack segment

C.4 8088 Instruction set
Instruction types:

● Move, copy arithmetic ops - mov, xchg, push, pop, add, sub, mul, div
● Logical, bit, shift ops - not, and, or, xor, shr, sal, rol, ror
● Loop, string ops - loop, movs, lods, stos, cmps
● Jump, call instructions - jump, jcc, call, ret
● System calls - sys

What’s the difference between a near jump and a far jump?
Frame pointer!!!

Quiz - What does push do? What does pop do? What is “Return address”? What is “Temporary 

result”? In our syntax... what is -2(%ebp)? 4(%ebp)?


