Half Adder

NOTE11: The various forms of a half adder
Text reference: Section 3.2

Binary addition - 4 cases for adding two bits:

A	0	0	1	1
+ B	+0	+1	+0	+1
----	----	----	----	----
SUM	0	1	1	0
				carry the 1

This is called a half adder.

- 2 inputs are A, B
- 2 outputs are SUM and CARRY

There is (always) 1 truth table.

A	B	SUM	CARRY
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

There are many possible equivalent Boolean equations.

$/ /$ from truth table	// using nand gates
SUM = AB' + A'B	SUM = $\left[\left(A B^{\prime}\right)^{\prime}\left(A^{\prime} B\right)^{\prime}\right]^{\prime}$
CARRY = AB	CARRY = $\left(A B^{\prime}\right)^{\prime}$

There are many equivalent logic gate implementations.

There are many equivalent Verilog HDL descriptions.

```
// half_adder.v
// gate-level Half Adder
/ /
module half_adder( A, B, SUM, CARRY);
    input A;
    input B;
    output SUM;
    output CARRY;
    xor ul( SUM, A, B);
    and u2( CARRY, A, B);
endmodule
```

