Ch 3.2 Adding!

NOTE10: Flushing out binary addition in detail
Text reference: Section 3.2

Remember our 2's complement... binary addition means we can also do subtraction

Binary addition - 4 cases for adding two bits:

A	0	0	1	1
$+\mathrm{B}$	+ 0	+ 1	+ 0	+ 1
SUM	0	1	1	0 ~> carry the 1

Half adder - add two bits, truth table, SUM = XOR

\mathbf{A}	B	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Full adder - add two bits with carry-in, now 8 row truth table, 2 half adders and OR gate

\mathbf{A}	\mathbf{B}	Carry in	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

ALU from page 167 - this is a 1-bit slice of an ALU

Boolean and arithmetic operations, controlled by inputs F0, F1

F1	F0	Operation
0	0	And $=A B$
0	1	Or $=A+B$
1	0	Invert $=B^{\prime}$
1	1	Add $=A$ add B

Enables (ENA, ENB) and invert (INVA) operations happen first!
8 slices rippled together create an 8-bit ALU

