Ch 3.2 Adding! NOTE10: Flushing out binary addition in detail Text reference: **Section 3.2**

Remember our 2's complement... binary addition means we can also do subtraction

Binary addition - 4 cases for adding two bits:

A + B	0 + 0	0 + 1	1 + 0	1 + 1
SUM	0	1	1	0
				~> carry the 1

Half adder - add two bits, truth table, SUM = XOR

Full adder - add two bits with carry-in, now 8 row truth table, 2 half adders and OR gate

ALU from page 167 - this is a 1-bit slice of an ALU

Boolean and arithmetic operations, controlled by inputs F0, F1

F1	F0	Operation
0	0	And = AB
0	1	Or = A+B
1	0	Invert = B'
1	1	Add = A add B

Enables (ENA, ENB) and invert (INVA) operations happen first! 8 slices rippled together create an 8-bit ALU

