
Using git and Github notes
Prof Bill - Mar 2020

My goal here is super simple: Introduce you to git and Github.

These are two of the most important tools available for any coder today!

We won’t be going into any great depth at all. I just want you to put some/all of your
CSC 210 code up into the cloud using git/Github. The next step is yours.

thanks...yow, bill

Sections:

I. Most important resources (links)

II. Overview

III. Download and signup

IV. Using git + Github

V. Etc

1

I. Most important resources (links)

Pretty much everything is online. Imagine that.

❖ git - the official site, git-scm.com

❖ git documentation hub, git-scm.com/doc

➢ Pro Git is a free book are the site, git-scm.com/book/en/v2

➢ Their 4 intro videos take less than 25 mins to watch, git-scm.com/videos

❖ Download git, git-scm.com/downloads

❖ Github - the official site, github.com

➢ Help on Github, help.github.com/en/github

➢ Github "learning paths", lab.github.com/githubtraining/paths

❖ Download Github...nope, let’s just use their website

❖ Etc

➢ History of git, en.wikipedia.org/wiki/Git#History and
git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git

➢ History of Github, github.com/about and
en.wikipedia.org/wiki/GitHub#History

➢ Git is open source and written in C; unsurprisingly, its code resides in a git
repo on Github, github.com/git/git

➢ Don’t forget our favorite Noctrl CSC alum: Github co-founder PJ Hyett,
github.com/pjhyett

➢ The best git cheat sheet I've found (so far),
github.github.com/training-kit/downloads/github-git-cheat-sheet/

2

https://git-scm.com/
https://git-scm.com/doc
https://git-scm.com/book/en/v2
https://git-scm.com/videos
https://git-scm.com/downloads
https://github.com/
https://help.github.com/en/github
https://lab.github.com/githubtraining/paths
https://en.wikipedia.org/wiki/Git#History
https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
https://github.com/about
https://en.wikipedia.org/wiki/GitHub#History
https://github.com/git/git
https://github.com/pjhyett
https://github.github.com/training-kit/downloads/github-git-cheat-sheet/

II. Overview

What is git?

Git is a free and open source distributed version control system designed to
handle everything from small to very large projects with speed and efficiency.
- git-scm.com

The official git site is git-scm.org. What is SCM?

SCM = Supply Chain Management...but not for nerds!

SCM = Source Control Management, aka version control

...the management of changes to documents, computer programs, large web
sites, and other collections of information
- en.wikipedia.org/wiki/Version_control

What is Github?

GitHub is a development platform inspired by the way you work. From open
source to business, you can host and review code, manage projects, and build
software alongside 40 million developers.
- github.com

/* OK, some of that is marketing blather. But it's largely true, imho. Github is HUGE and
important and does more than just store some git repos. */

What parts of git and Github are we covering?

❖ The most basic git commands: init, add, commit, push, pull, checkout.
❖ On Github, we'll create a Github repo and use it for Program #3.

What are we skipping?

❖ Ugh - tons. We are just barely skimming the surface.

3

https://git-scm.com/
https://en.wikipedia.org/wiki/Version_control
https://github.com/

❖ The biggies off the top of my head: collaboration, branches, merging, etc.

What's the point?

❖ I want you to have public repos of your school code and other work, if you want.
Then, at a company or interview or in the kitchen with your folks, you show
others your work (code) in a browser tab.

❖ We're skipping important stuff because of time limits. But my hope though is that
this introduction will help you explore more about git and Github later if you want.

4

III. Download and signup

Download git. Signup at Github.

III.i Download git

Here’s the link. Go!

git-scm.com/downloads

Run this command from the command prompt to verify that you’re cool.

$ git --version

Tell git your name and email.

$ git config --global user.name "[name]"

$ git config --global user.email "[email address]"

III.ii Signup at Github

Here’s the link. Go! (again)

github.com

Signup choices can be stressful, my two cents:

+ I prefer a professional username; don't get too cute.
Mine is williamt777, fwiw. Your real/full name is part of
your profile
+ I use my real email, not noctrl. You can have multiple
emails (like noctrl) and select one as primary
+ Dear fellow nerd - I sure hope you have a password
algorithm or manager by now (cough)
+ Github will let you edit profile stuff later. They do warn
that changing your username may be painful, however.

5

https://git-scm.com/downloads
https://github.com/

IV. Using git + Github

This section is the nitty-gritty. Get your command line ready. (smile)

IV.i. Workflow

This is often called "workflow".

I really like this blog post and diagram.

dev.to/mollynem/git-github--workflow-fundamentals-5496

Some details:

● "Local" is your machine and "Remote" is Github.

● Your workaday commands are: git add and git commit

● To save your work, git push it to Github.

● To get the latest, greatest from Github onto your local machine, do git pull.

● If you're using branches, use git checkout.

6

https://dev.to/mollynem/git-github--workflow-fundamentals-5496

IV.ii. Brand new work, your first repo

Let's create your "first repo" and call it csc210-hello.

Step 1: Create a new repo at Github

➢ Goto github.com. Make sure you're logged in.
➢ Select the + sign in the upper right, then "New repository"
➢ Repo name: Try something like "csc210-hello"
➢ Other options: No README or gitignore or whatever...you can add those later

Step 2: Do local git setup. I follow the handy Github instructions (below), pretty much:

$ mkdir csc210-hello # new folder

$ cd csc210-hello

$ echo "# Hello, CSC 210" > README.md

$ git init

$ git add -A # all files is better

$ git commit -m "my first commit"

copy-paste this command from Github, not mine

$ git remote add origin

https://github.com/your-username/csc210-hello.git
$ git push -u origin master

Step 3: Check your repo on Github

➢ Go back to Github and click on your repo link. You should see your README.

7

Step 4: Try a normal workflow.

make a small edit to your README.md

Add a couple lines: "This is my first repo", "blah blah"

$ git add -A

$ git status # for fun!

$ git commit -m "tiny edit to README"

tell Github about this, push!

$ git push origin master

Refresh your Github repo to see your README changes.

Note:

➔ README.md is special in Github. It's automatically displayed at the bottom of
your repo page; other files are not.

➔ Your repo is public. Just like mine: github.com/williamt777/csc210-hello

➔ Notice that you can visit my repo, and git clone to get your own copy.

8

https://github.com/williamt777/csc210-hello

IV.iii. An existing project

If you already have code, then the initial setup is slightly different than when starting
from scratch. I put the "existing project" case first because it seems more common.

I'll mostly use the steps in Github's overview:

Adding an existing project to GitHub using the command line
help.github.com/en/github/importing-your-projects-to-github/adding-an-existing-pr
oject-to-github-using-the-command-line

I call my example csc210-program3. That's a project I have already started.

Step 1: Create a repo on Github. Same as before. Repo name: csc210-program3.

Step 2: Init git

Goto to your existing folder and initialize git.

$ cd csc210-program3

$ git init

Step 3: add, commit

$ git add -A

$ git commit -m "short, helpful message"

Step 4: push up to your Github repo

At your new Github repo, copy the csc210-program3.git link

$ git remote add origin <repo URL/csc210-program3.git>

$ $ git remote -v # verify

$ git push -u origin master

Check your repo on Github. That's it! Once you're setup, the workflow is the same as
above: edit, git add, git commit, git push.

9

https://help.github.com/en/github/importing-your-projects-to-github/adding-an-existing-project-to-github-using-the-command-line
https://help.github.com/en/github/importing-your-projects-to-github/adding-an-existing-project-to-github-using-the-command-line

IV.iv Final usage points

If you crash and burn on a small program like this, you can always start over:

● Delete your Github repo

● Create a new repo, folder, copy your code, and do git init again

Danger, Will Robinson! You never want to push sensitive information up to Github,
especially a public repo! Here's Github's warning:

help.github.com/en/github/importing-your-projects-to-github/adding-an-existing-project-t
o-github-using-the-command-line

To prevent this, use the .gitignore file to exclude specific files from git oversight.

● This is overkill: help.github.com/en/github/using-git/ignoring-files
● Just create the .gitignore file in your folder. Then list files and folders you want

ignored, one per line.
● google .gitignore examples

10

https://help.github.com/en/github/importing-your-projects-to-github/adding-an-existing-project-to-github-using-the-command-line
https://help.github.com/en/github/importing-your-projects-to-github/adding-an-existing-project-to-github-using-the-command-line
https://help.github.com/en/github/using-git/ignoring-files

V. Etc

/* blather, mostly */

V.i Your job interview

Imagine the near future…

Mr. Acme (interviewer): Hello, <your name>.

You: Hello, Mr. Acme.

Acme: So, tell me a little about yourself.

You: Well, I love git and Github. Most of my Noctrl school work and projects are
available on Github. Want to see? (open your laptop)

Acme: You're hired! (smiles and shakes your elbow)

OK, maybe a little over-dramatic, but still...having your Github repos available when
interviewing is like a musician having youtube videos. You are showing: 1) you know
cool stuff like git + Github, 2) you do extra, and 3) you are an owner.

V.ii Back in the day

Before git and Github, back in the day, source control was simpler but very restrictive:

● Packages/modules had owners. Those people, alone, changed their code. If you
needed something, then you requested they do it.

● Files were locked. To make changes, you "checkout" a file, which would lock the
file and prohibit other people from changing the code. When your work is done,
you "checkin" the file, unlocking it for others.

That was then. Today, the impact of the git + Github combo has been dramatic:

❏ It has led to an explosion in open source software. Anyone can now contribute
to an open source repo. Or start their own. Or fork a new version of some open
source project.

❏ Development work is more distributed than ever. People are able to work at
home or away from some central office. Companies can create private repos on

11

Github which strictly restrict access. Also, git is so efficient that even the largest
projects (like Windows, a very interesting link) are now managed using git.

V.iii Git is mean

First things first...git is a revolution and a revelation. It's transformed how software is
developed here in 2020.

Git isn't always very "friendly".

➔ The user model is awkward for many people. I "checkout"...and git does what?!?
And staging...can you explain that again? The git learning curve is pretty steep.

➔ Do the wrong thing in git, and you can really hurt yourself. There's no undo for
many operations. Google "git horror stories"...to find blog posts like this one, "The
Git Haters Guide, www.evan.org/Fun/Git/index.htm. (ha)

➔ Merge is a wonderful idea. Many people, working on the same code, and then
you merge. Huzzah! Well, in practical terms, it's often a tremendous and complex
headache.

OK, enough already! Git and Github aren't going anywhere, and they're tremendous
tools. The guys who run large projects or open source behemoths are able to do
amazing things with git and Github. So, it's up to us (and every other coder) to learn it,
love it, live it. (ha again)

V.iv Collaboration, branches

Branches are probably the most important feature we've skipped. It allows multiple
coders to work on different parts of a repo at one time. When you push a branch, the
repo owner decides if/when your branch is merged.

You can google and get tons more information. This is a turbo-summary.

Step 1: set to master branch, pull latest code from Github

$ git checkout master

$ git pull origin master

Step 2: create a new branch

$ git checkout -b <new-branch-name>

12

https://devblogs.microsoft.com/bharry/the-largest-git-repo-on-the-planet/
http://www.evan.org/Fun/Git/index.htm

Step 3: do your normal workflow of {edit, add, commit}

Step 4: when you're done, push your branch up to Github

git push origin <new-branch-name>

Step 5: after branch is merged, back to master, pull to

update

$ git checkout master

$ git pull origin master

V.v More on Github

Github offers so much functionality!

● Education pack - Github offers students gobs of free goodies..."to give students
free access to the best developer tools in one place so they can learn by doing",
education.github.com/pack

● Issues - Track bugs/enhancements/ideas right in Github. Very nice!

● Using a gui - Github desktop is their gui for much of what I have described here,
desktop.github.com. There are many git guis out there. And editors like VS Code
have git operations built into them. So, the command line is not the only way.

● Github Pages - create and host a website (username.github.io) at Github (free),
pages.github.com; you can grab a domain (tiny $$$) and use it at Github Pages
as well

V.vi That's a wrap

I'll wrap with a practical question. What's the best organization for your Github account?

The best answer (I think): It's mostly up to you.

In CSC 210, it seems you have two options:

➢ A repo for each program, or
➢ One repo for the whole class (so each program is a folder in some csc210 folder)

Since no one is using or relying on your code, you can change your mind. So, try a repo
for each program, and then put them all in one folder later if you want.

two cents...yow, bill

13

https://education.github.com/pack
https://desktop.github.com/
https://pages.github.com/

