
Sorting and searching notes
Prof Bill - Mar 2020

Sections are:

A. Basic sorting: Bubble sort, Selection sort

B. Advanced sorting: Quicksort, Heapsort

C. Searching: linear search, binary search

D. Bonus: NP-complete problem

Reading:

● Morin, Open Data Structures Ch 11 Sorting,
opendatastructures.org/ods-java/11_Sorting_Algorithms.html

● Sedgewick, Algorithms Ch 2 Sorting, algs4.cs.princeton.edu/20sorting

The best way to learn these various sorting algorithms (imho) is to use our favorite
animation site. He does an outstanding job showing how each sort works,
www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

thanks… yow, bill

1

http://opendatastructures.org/ods-java/11_Sorting_Algorithms.html
https://algs4.cs.princeton.edu/20sorting/
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

A. Basic sorting: Bubble sort, Selection sort
The two most basic sorting algorithms are Bubble sort and Selection sort.

It’s easy to remember which is which:

➔ Bubble sort - lots of swaps

➔ Selection sort - one swap per pass

Structure: These basic algorithms use a nested for loop:

for(each element in the array)

 for(every other element in the array or so)

 do work: compare, swap, etc

Analysis: Bubble sort and Selection sort are both O(n2). (yuk)

So, sorting 100 items means about 100*100 = 10,000 time units.

What’s the hit to sort 10,000 items? (gulp)

Note: Insertion sort is another basic sort with O(n2) performance.

It sure would be nice if we had a faster sorting algorithm than this.

Next page.

2

B. Advanced sorting: Quicksort, Heapsort
Quicksort is the $$$. Some details:

❏ The Quicksort algorithm is recursive and has 3 steps:

quicksort(data) {

 partition data into two halves // not equal halves

 quicksort(the first half)

 quicksort(the second half)

}

❏ Average performance is O(N log N).

❏ “The quicksort algorithm was developed in 1959 by Tony Hoare while in the
Soviet Union, as a visiting student at Moscow State University.”,
en.wikipedia.org/wiki/Quicksort

❏ Sedgewick says: “2.3 Quicksort describes quicksort, which is used more widely
than any other sorting algorithm.”

Partition, pivot - Quicksort places pivot in spot so that all values below pivot in the
array are <= the pivot value, and all values above are > pivot value.

Source: faculty.ycp.edu/~dhovemey/fall2005/cs102/lecture/11-1-2005.html

3

https://en.wikipedia.org/wiki/Quicksort
http://faculty.ycp.edu/~dhovemey/fall2005/cs102/lecture/11-1-2005.html

Quicksort pseudocode, source: www.geeksforgeeks.org/quick-sort/

// recursive quicksort algorithm

quickSort(arr[], low, high)

 if (low < high)

 // pi is partitioning index, arr[p] is now correct

 pi = partition(arr, low, high);

 quickSort(arr, low, pi - 1); // Before pi

 quickSort(arr, pi + 1, high); // After pi

// swap within array range so everything below pivot is <= and above is >

// pivot index is returned

int partition (arr[], low, high)

 pivot = arr[high]; // pivot, last item

 i = (low - 1) // index of smaller element

 for (j = low; j <= high- 1; j++)

 if (arr[j] <= pivot) // if current is <= pivot

 i++;

 swap arr[i] and arr[j]

 swap arr[i + 1] and arr[high])

 return (i + 1)

Quicksort example

4

https://www.geeksforgeeks.org/quick-sort/

One problem with Quicksort. It’s not stable. A stable sort is one where two equal
objects are left in the same order in sorted output as they appear in the input array,
www.geeksforgeeks.org/stability-in-sorting-algorithms/

The Heapsort algorithm is very simple. Build a heap with your data, then use
removeMin().

We know that heap insert and search are O(log N).

Do that N times and you get O(N log N) performance for heapsort.

Mergesort is another O(N log N) sorting algorithm.

5

https://www.geeksforgeeks.org/stability-in-sorting-algorithms/

C. Searching
Two methods for searching an array of data: sequential search, binary search.

Sequential search: is the obvious search solution.

● Look at each item in the array, from 1 to N
● Performance is O(N)

Binary search is a little fancier:

❏ Array must already be sorted!

❏ Divide problem size in half with each iteration, hence the O(log N)

Binary search pseudocode (source: www.codecodex.com/wiki/Binary_search):

// recursive binary search, returns item if found

binarySearch(a, value, left, right)

 if right < left, then return not found

 mid = (right + left)/2

 if a[mid] == value

 return mid

 if value < a[mid] // smaller value means search left

 return binarySearch(a, value, left, mid-1)

 else // larger value means search right

 return binarySearch(a, value, mid+1, right)

Since binary search is tail recursion, we can (pretty easily) make it iterative (faster!).

// iterative binary search

binarySearch(a, value, left, right)

 while left ≤ right

 mid = (right + left)/2

 if a[mid] == value

 return mid

 if value < a[mid] // smaller value means search left

 right := mid-1

 else // larger value means search right

 left := mid+1

 return not found

6

http://www.codecodex.com/wiki/Binary_search

D. NP-Complete problem
Finally…

Big-O is a part of one of the most significant unsolved problems in math/computer
science today. It’s known as the P vs. NP Problem. If you can publish a solution, these
guys will give you a million bucks.

www.claymath.org/millennium-problems/p-vs-np-problem

In fact, one of the outstanding problems in computer science is determining
whether questions exist whose answer can be quickly checked, but which require
an impossibly long time to solve by any direct procedure. Problems like the one
listed above certainly seem to be of this kind, but so far no one has managed to
prove that any of them really are so hard as they appear, i.e., that there really is
no feasible way to generate an answer with the help of a computer. Stephen
Cook and Leonid Levin formulated the P (i.e., easy to find) versus NP (i.e., easy
to check) problem independently in 1971.

P problems are those where solutions are easily found (polynomial time, hence the “P”).

NP problems are those that are easy to verify (in polynomial time), but hard to solve.

A large set of problems are called NP-complete as they can be easily verified, but no
one has proven that they are hard to solve yet.

Wikipedia does a nice summary as well, en.wikipedia.org/wiki/NP-completeness.

www.claymath.org

7

http://www.claymath.org/millennium-problems/p-vs-np-problem
https://en.wikipedia.org/wiki/NP-completeness
http://www.claymath.org/

