
Java inheritance notes
Prof Bill, Feb 2020

Our “textbook” links:

➢ Sedgewick Java 3.3 Designing data types, introcs.cs.princeton.edu/java/33design

➢ Oracle Java, Interfaces and Inheritance section, docs.oracle.com/javase/tutorial/java

Thank you - I bow down to Noctrl’s own Dr. Godfrey Muganda for his excellent Java
textbook. I have liberally borrowed ideas from this book.
media.pearsoncmg.com/bc/abp/cs-resources/products/product.html#product,isbn=0134038177

Sections:
1) Definitions, 2) UML, 3) Inheritance and ctors, 4) Override methods,
5) Access to methods and variables, 6) Classes, abstract classes, and interfaces,
7) Polymorphism, 8) The Object class

Terms:

inheritance
concrete class
abstract class
interface
polymorphism
composition

Keywords

extends, implements

this, super

public, private, protected

Versus battles:
is-a, has-a relationships
super class, subclass
override, overload
inheritance, composition
single inheritance, multiple inheritance

Object class
inner classes

uml diagram: class name, variables,
methods; has-a arrow, is-a arrow

1

https://introcs.cs.princeton.edu/java/33design/
https://docs.oracle.com/javase/tutorial/java/
https://media.pearsoncmg.com/bc/abp/cs-resources/products/product.html#product,isbn=0134038177

1. Definitions

Inheritance - allows a new class to extend an existing class; the new inherits the
member methods and variables

In definition above, existing class is the superclass; the new class is the subclass.

Java snippet:

public class NewExample extends ExistingExample {
 // new inherits methods and variables from existing

 // NewExample is subclass; ExistingExample is superclass

}

Inheritance is often called the is-a relationship; example: Grasshopper is-a Insect;
another example: every class is-a Object implicitly in Java

Java has two mechanisms for inheritance:

1. Interface, using implements keyword; methods only
2. Class, using extends keyword; methods and variables

Composition - allows a new class to specify other existing classes that are a part of it

In Java, composition simply means that one object is a member variable of another.

Composition is often call the has-a relationship; example: Grasshopper has-a Leg

More Grasshopper:

public class Grasshopper extends Insect {
 // Grasshopper is-a Insect; methods and vars inherited!

 // You can create Grasshopper-specific methods/vars

 Leg backLeft; // composition has-a Leg

 Leg backRight;

 int jump() {

 // code

 }

}

2

You can have levels of inheritance. Example: C is-a B, B is-a A.

public class A {

 // super class methods and variables

}

public class B extends A {

 // B is-a A; B is subclass, A superclass

}

public class C extends B {

 // C is-a B; C is subclass, B is superclass

}

Libraries like Java Collections Framework (JCF) have many, many levels of inheritance.
It’s fair to describe these libraries as “complex”.

Some people call this an inheritance chain. Some call it the inheritance hierarchy.

Clash of the keywords: implements vs. extends

➢ A class may only extend only one other class
➢ However, Java allows you to implement as many interfaces as you like
➢ Why the difference? Interfaces don’t have variables or ctors that can complicate

inheritance

Clash of the relationships: inheritance vs. composition, is-a vs. has-a

❖ Select relationship that best models your design
❖ This is often a difficult design decision

/* Inheritance is the core of OOP in Java. Much of this stuff is very simple and makes
sense; that’s its power. */

3

2. UML

UML class diagrams are an easy, short-hand way to describe classes and the
relationships between classes.

In UML, a class is defined as a rectangle with its name, variables, and methods

Professor

String name

String collegeId

int years

teach(Course c)

grade(int hours)

Your diagram can include +/- to indicate public/private members. If they’re missing, we
will assume that variables are private and methods are public. Data hiding!

This is a nice overview, and it’s where I got my figures below:
www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-aggregation-vs-composition/

Inheritance, the is-a relationship, is shown with an open arrow between classes
Example: SavingsAccount is-a BankAccount

Composition, the has-a relationship, is shown with a diamond arrow between classes
Example: Person has-a Hand

4

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-aggregation-vs-composition/

We won’t cover:

➔ Some people worry about the subtle difference between composition and
aggregation...we will not

➔ The UML standard is HUGE and includes many different diagrams; we’ll only
care about the class diagram

5

3. Inheritance and ctors

General ctor rules for all classes:

➔ The ctor method name is the same as the class name; example: for the Apple
class, the default ctor is Apple().

➔ The default ctor has no parameters.
➔ If a class doesn’t have any ctor specified, then Java implicitly calls a default ctor

to create the variables for a new object.
➔ If you specify any ctors in a class, Java won’t implicitly do anything...you must

use the ctor(s) specified.

One of the downsides of inheritance...it complicates the creation of objects. Here are
some ctor guidelines:

● The superclass ctor always executes before the subclass ctor. This makes
sense: a subclass may need superclass data in its own ctor. Java makes this
happen automatically.

● In rare cases, you may want to call the super ctor yourself.
○ To do this, use the keyword super.
○ When calling the super ctor, it must be the first line in your subclass ctor.
○ One reason to do this: send super ctor arguments; example: super(17)

● When interfaces are used for inheritance, these rules don’t apply. Interfaces don’t
have ctors.

● If no ctor is specified, then Java

Note the important class vs. interface tradeoff here:

+ Interfaces are simpler and more elegant than classes for inheritance; they don’t
have ctor complexity/issues

- But interfaces don’t have variables
- Interfaces are abstract and therefore can’t be created as objects

/* The impact of inheritance on ctors and creating objects is sometimes difficult and hard
to follow. This is a weakness of inheritance. */

6

4. Override methods

It’s common for a subclass to override the methods of a superclass. This is done by
matching the method name and parameters exactly in your subclass.

Some guidelines:

❏ A subclass must override any abstract methods in the superclass

❏ All interface methods are abstract (they have no code)

❏ Why override a superclass method that is not abstract (and therefore has code)?
Because the subclass needs to accomplish something different in the method.

Java snippet:

public class A {

 public void exitMaze(int level) {

 // code here

 }

}

public class B extends A {

 public void exitMaze(int level) {

 // override code here!

 }

}

You can’t override superclass variables. You can change their value, but not their type
or anything like that.

/* I can override a method. I can overload a method. What’s the difference? */

7

5. Access to methods and variables

Access to class methods and variables is controlled by these three keywords:

● public - can be called (method) or changed (variable) by anyone

● private - can only be called or changed within the class

● protected - can only be called or changed within the class or any subclass

For data hiding, we typically have private variables and public methods.

Java example:

public class A {

 private int powerUps;

 protected String levelName;

 public void moveMario() {

 // code here

 }

}

public class B extends A {

 public void example() {

 // powerUps var - no access because it’s private

 // levelName var - can change in subclass because it’s protected

 levelName = “Rainbow road”;

 }

}

8

6. Classes, abstract classes, and interfaces

A class has code for all its methods. This is sometimes called a concrete class.

An interface has no code, only method signatures. All methods are implicitly abstract.

An abstract class is a mixture, some abstract and some code. It must be specified
explicitly using the keyword abstract.

These three options are tools to you as a Java coder. They are there for you to best
model the design you are trying to implement.

Java abstract class example:

public abstract class GhostWorld {

 private String[] actors;

 public double averageReview() {

 // code here

 }

 public abstract favoriteActor(int appearances);

}

Interfaces and abstract classes can not be created as objects. They are missing code!

They can only be used as a superclass.

9

One common paradigm for abstract classes: add code to an interface.

Java snippet:

public interface WordCounter {
 public void countWord(String w);

}

public abstract class WordCounterAbs implements WordCounter {

 public void countWordsInString(String sentence) {

 // code here, calls countWord() defined in interface

 }

 public void countWordsInFile(String fileName) {

 // code here, calls countWord() defined in interface

 }

 // NOTE: no countWord() method; so class is still abstract

}

public class MyWordCounter extends WordCounterAbs {
 public countWord(String w) {

 // code here; method is no longer abstract!

 }

}

So, motivation for abstract class is often code sharing. JCF example: the abstract class
AbstractMap has code that is shared by HashMap and TreeHashMap classes.

/* Yes, abstract classes are more complex, a deeper dive. */

10

7. Polymorphism

Polymorphism literally means: many forms or shapes.

In Java, it means that a subclass method is given priority over the superclass. Example!

public interface Shape {

 public void draw();

}

public Rectangle implements Shape {

 public void draw() {

 // code to draw a rectangle

 }

}

// define Circle is-a Shape, Square is-a Shape, etc

// snippet: ArrayList of Shapes draws correctly with polymorphism

ArrayList<Shape> shapes = new ArrayList<>();

Rectangle r = new Rectangle();

shapes.add(r);

Circle c = new Circle();

shapes.add(c);

Square sq = new Square();

shares.add(sq);

for(Shape sh: shapes) {

 sh.draw(); // correct subclass method called, polymorphism!

}

Nice polymorphism example: Animal class with Cat, Horse subclasses.
beginnersbook.com/2013/03/polymorphism-in-java/

/* Once you “get it”, polymorphism is easy to use and powerful. */

11

https://beginnersbook.com/2013/03/polymorphism-in-java/

8. The Object class

Java snippet.

public class Example {

 // methods and variables here

}

Implicit for every class: Example is-a Object, or public class Example extends Object

Here’s the Javadoc: docs.oracle.com/javase/8/docs/api/java/util/Objects.html

Three important methods in Object:

➢ equals() - compare two objects; default use pointer

➢ hashCode() - get hash code for object; default use pointer

➢ toString() - return string for object; default create string for pointer

The method defaults are to use Object pointers, but that’s often not very helpful.

The answer: Override in your class.

public class Example {

 // override Object method for nicer printing

 public String toString() {
 return “Last example!”;

 }

}

12

https://docs.oracle.com/javase/8/docs/api/java/util/Objects.html

