Homework 05 - fib of n

Focus: hash tables
Due: Mon Feb 10, 2020 (bring to class)
Reading:

- Sedgewick Java 2.3 Recursion, introcs.cs.princeton.edu/java/23recursion
- Prof Bill Recursion notes, wtkrieger.faculty.noctrl.edu/csc210-spring2020/docs/recursion_notes.pdf
thanks...yow, bill

Fibonacci coding

Step 1: Let's write some code to calculate the Fibonacci number, $\mathrm{F}(\mathrm{n})$:

$$
F_{n}=F_{n-1}+F_{n-2} \text { for } n \geq 2 \text {, with } F_{0}=0 \text { and } F_{1}=1
$$

Write two methods to do this: 1) recursive, and 2) iterative. My simple solution will probably look something like this:

```
public class Homework05 {
    public static void main( String[] args) {
        // 1) say hello, then ask user for an int
        // 2) call fibRecursive and print the answer
        // 3) call fibIterative and print the answer
    }
    public static long fibRecursive( int n) {
        // code here, use recursion to calc Fib(n) and return
    }
    public static long fibIterative( int n) {
        // code here, use a loop to calc Fib(n) and return
    }
}
```

/* Hint: There's some helpful pseudocode in the Sedgewick section referenced above. */
Once you're running, what is $\mathrm{Fib}(10)$? $\mathrm{Fib}(20)$? $\mathrm{Fib}(40)$? What is $\mathrm{Fib}(100)$? (yikes!)

Step 2: Let's add some code to time how long our two methods take to run. I prefer the method System.currentTimeMillis() for benchmarking. It goes something like this:

```
long start = System.currentTimeMillis();
// call method to time
long end = System.currentTimeMillis();
long durationMillis = end - start;
```

Google for help. Also, if you find a better, funner way, then use it. And then you can show the rest of us.

Bonus: If the numbers in your Fib solution get too big for your program to handle, then google "java BigInteger". This is a class that can represent and do simple math operations on REALLY BIG integers.

This bonus step is optional, but BigInteger is really cool. Give it a try if you have time.

THE FIBONACCI SEQUENCE

$1,1,2,3,5,8,13,21,34,55,89,144$, 233, 377

$$
\begin{array}{ll}
1+1=2 & 13+21=34 \\
1+2=3 & 21+34=55 \\
2+3=5 & 34+55=89 \\
3+5=8 & 55+89=144 \\
5+8=13 & 89+144=233 \\
8+13=21 & 144+233=377
\end{array}
$$

PS - Fibonacci is an Italian mathematician, born in 1170 (gasp!), en.wikipedia.org/wiki/Fibonacci

