
Graph algorithm notes
Prof Bill - Apr 2020

These notes introduce some cool graph algorithms.

Sections are:

A. Graph search/traversal: DFS, BFS

B. Topological Sort

C. Shortest Path: Dijkstra’s Algorithm

D. Minimum Spanning Tree: Prim, Kruskal

QOTD

Here they come, spinning out of the turn!
- Phill Georgeff, en.wikipedia.org/wiki/Phil_Georgeff

We are in the home stretch.

thanks… yow, bill

1

https://en.wikipedia.org/wiki/Phil_Georgeff

A. Graph Traversal
Reading:

❖ Sedgewick Ch 4.1 Undirected graphs, algs4.cs.princeton.edu/41graph

❖ Animation:

➢ DFS, www.cs.usfca.edu/~galles/visualization/DFS.html

➢ BFS, www.cs.usfca.edu/~galles/visualization/BFS.html

Traversal/search = visit all verts in the graph or all connected verts in a subgraph

Two flavors: Depth-first search (DFS) and Breadth-first search (BFS)

Depth-first search (DFS)

Key concept - it’s recursive!

Let’s roll the pseudocode:

mark all verts in graph as not visited

call dfs(some vert)

// mark vertex v as visited, then recursively visit all connected verts

dfs(vertex v) {

 mark v as visited

 for each vert w adjacent to v {

 if w not visited

 dfs(w)

 }

}

Applications of DFS: detect cycle in graph, find path between verts, determine if
connected graph, topological sort, determine if bipartite graph, walk thru maze
Source: www.geeksforgeeks.org/?p=11644

2

https://algs4.cs.princeton.edu/41graph/
https://www.cs.usfca.edu/~galles/visualization/DFS.html
https://www.cs.usfca.edu/~galles/visualization/BFS.html
https://www.geeksforgeeks.org/?p=11644

Traversal example: Start at vertex A, list verts as you visit them
/* when you have a choice of >1 verts, use sorted order */

DFS traversal example answer: A, C, F, B, G, D, E, H

Breadth-first search (BFS)

Key concept - use a queue! And more pseudocode:

// use queue to do a breadth-first traversal of graph

bfs(vertex v) {

 mark all verts not visited

 q = new queue

 q.enqueue(v)

 mark v as visited

 while ! q.isEmpty() {

 v2 = q.dequeue()

 for each vert w: adjacent to v2 {

 if w not visited

 q.enqueue(w)

 mark w as visited

 }

 }

}

Applications of BFS: min spanning tree, shortest path, peer-to-peer networks, social
media, search engine crawlers,
Source: www.geeksforgeeks.org/applications-of-breadth-first-traversal

3

https://www.geeksforgeeks.org/applications-of-breadth-first-traversal/

Try that traversal example again, using BFS…

BFS traversal example answer: A, C, D, F, G, E, H, B

Question: Hey Prof Bill, got any more DFS and BFS traversal examples to try?

Answer: I do! Head over to our favorite animation site and scroll down to “Graph
Algorithms”. The key: try to answer the problem, then run the animation to check your
result. www.cs.usfca.edu/~galles/visualization/Algorithms.html

Question: In earlier DFS pseudocode, can we remove recursion?

Answer: Yes! Use a stack, similar to the use of a queue in BFS,
www.mathcs.emory.edu/~cheung/Courses/171/Syllabus/11-Graph/dfs.html

4

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
http://www.mathcs.emory.edu/~cheung/Courses/171/Syllabus/11-Graph/dfs.html

B. Topological Sort
Reading:

➔ Sedgewick Section 4.2 Directed graphs, algs4.cs.princeton.edu/42digraph

➔ Animation: www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html

Topological sort - a nice recursive definition

An ordering of vertices in a directed acyclic graph, such that:
If there is a path from u to v, then v appears after u in the ordering.

Also...

● For directed acyclic graph (DAG) only, please.
● There can be more than one topological sort for any graph.
● A cycle in the graph breaks this definition and therefore has no topological sort.

For example: path from u to v… and also v to u… then who goes first in sort?

Example: What is topological sort?

Source: lcm.csa.iisc.ernet.in/dsa/node170.html

5

https://algs4.cs.princeton.edu/42digraph/
https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html
http://lcm.csa.iisc.ernet.in/dsa/node170.html

Example answer: B A D C E

DFS algorithm

Combine DFS with stack. Push vert onto stack after its DFS traversal is done.

Topological sort = reverse postorder of DFS search.

Pseudocode:

// print verts in topological sort order

toposort(graph g) {

 s = new stack

 for each vert v in g

 dfs2(v, s)

 while not s.isEmpty()

 v = s.pop()

 print v

}

// dfs traversal, vert pushed on stack once all neighbors visited

dfs2(vertex v, stack s) {

 mark v as visited

 for each vert w: adjacent to v {

 if w not visited

 dfs(w)

 }

 s.push(v)

}

6

C. Shortest Path: Dijkstra’s Algorithm
Reading:

➔ Sedgewick Section 4.4 Shortest paths, algs4.cs.princeton.edu/44sp

➔ Sedgewick slides:
algs4.cs.princeton.edu/lectures/keynote/44ShortestPaths-2x2.pdf

➔ Animation: www.cs.usfca.edu/~galles/visualization/Dijkstra.html

weighted graph - each edge has a positive weight (distance, force, etc)

Dikstra’s Algorithm - single-source shortest path in a graph; greedy + relaxation

● greedy algorithm - choose the shortest (best) edge at each step.

● relaxation - shortest path updated during algorithm with better option, if found

Basis for Dijkstra = “edge relaxation”:

// if the new path to v is shorter, then use it!

if D[u] + w(u, v) < D[v] then

D[v] = D[u] + w(u, v)

Etc.
➢ Positive weights only, negative weights break some algorithms (like Dijkstra)
➢ To use Dijkstra on unweighted graphs, use weight=1 for each edge
➢ Dijkstra algo has a single source (vert), but find the shortest path to all other verts

from the source
➢ Edsger W. Dijkstra was a GIANT in computer science,

en.wikipedia.org/wiki/Edsger_W._Dijkstra

QOTD

The art of programming is the art of organizing complexity, of mastering multitude
and avoiding its bastard chaos as effectively as possible.
- Dijkstra, en.wikiquote.org/wiki/Edsger_W._Dijkstra

7

https://algs4.cs.princeton.edu/44sp/
https://algs4.cs.princeton.edu/lectures/keynote/44ShortestPaths-2x2.pdf
https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikiquote.org/wiki/Edsger_W._Dijkstra

Pseudocode

Prep notes:

➔ d[v] = distance (sum of weights) from source to v; init to d[v] = INF
➔ prev[v] = previous edge on shortest path to v; init to path[v] = -1
➔ d[v] and path[v] are updated and improved over the iterations (relaxation!)
➔ controlling data structure: Priority Queue with verts ordered by distance, d[v]

// Dijkstra’s algorithm, single-source shortest path

shortestPath(graph G, vertex source) {

 for all verts v // init all vert with infinite distance and no prev edge

 d[v]=INF

 prev[v]=-1

 d[source] = 0 // distance to source is zero

 pq.enqueue(source)

 while pq not empty {

 u = pq.removeMin()

 for each edge (u, v) {

 if d[u] + weight(u, v) < d[v]

 d[v] = d[u] + weight(u, v) // relaxation

 prev[v] = u

 if pq.contains(v) then pq.decreaseKey(v, d[v])

 else pq.enqueue(v)

 }

 }

}

Wrap notes:
➔ Shortest path now contained in d[] and prev[] arrays

◆ Shortest path distance from source to any vert v is at d[v]
◆ Reconstruct verts in the path by looping back from prev[v] to the source

➔ Performance: With binary heap, O(log V) operations (enqueue, decreaseKey,
removeMin) performed for each edge = O(E log V)

Question: What are d, prev for an unreachable vertex?

8

Example (from Sedgewick): Find shortest paths, starting at vert 0

Solution: Sedgewick slides,
algs4.cs.princeton.edu/lectures/keynote/44ShortestPaths-2x2.pdf

Question: Does Dijkstra work if edges have a negative weight?

Dijkstra’s algo is greedy. So is Prim’s algo for min spanning tree… coming up!

9

https://algs4.cs.princeton.edu/lectures/keynote/44ShortestPaths-2x2.pdf

D. Min Spanning Tree: Prim, Kruskal
Reading:

❏ Sedgewick Section 4.3 Minimum spanning trees, algs4.cs.princeton.edu/43mst

❏ Sedgewick slides,
algs4.cs.princeton.edu/lectures/keynote/43MinimumSpanningTrees-2x2.pdf

❏ Animation:

❏ Prim’s algorithm: www.cs.usfca.edu/~galles/visualization/Prim.html

❏ Kruskal’s algorithm: www.cs.usfca.edu/~galles/visualization/Kruskal.html

spanning tree - a tree that contains every vertex in a connected graph (remember -
tree means no cycles!); it’s a list of edges

min spanning tree - the spanning tree where the sum of edge weights is smallest

10

https://algs4.cs.princeton.edu/43mst/
https://algs4.cs.princeton.edu/lectures/keynote/43MinimumSpanningTrees-2x2.pdf
https://www.cs.usfca.edu/~galles/visualization/Prim.html
https://www.cs.usfca.edu/~galles/visualization/Kruskal.html

Prim’s Algorithm

In English: Pick a vertex to be the root of the tree. Find the min weight edge connected
to the tree. Add that edge’s vertex. Repeat until all vertices are in the tree.

Similar to Dijkstra’s Algorithm for finding the shortest path.

Pseudo-code:

primsMST(G, startv) {

 create distance array, D[#vertices] = inf

 create parent array, parent[#vertices] = -1

 create known array, known[#vertices] = false

 D[startv] = 0 // start vertex is tree root

 add each D[i] to PriorityQueue PQ

 while PQ not empty {

 u = PQ.removeMin()

 known[u] = true

 for each edge connected to u, (u, v) {

 if ! known[v] and weight of edge < D[v] {

 D[v] = weight of edge

 parent[v] = u

 change D[v] key in PQ // remove, and re-add to PQ

 }

 }

 }

 for each vertex, v

 add edge (v, parent[v]) to MST list

}

11

Kruskal’s Algorithm

In English:

sort the edges by weight
for each edge
 add edge to MST if it doesn’t create a cycle

Pseudo-code:

kruskalsMST(G) {

 place each vertex in its own disjoint set

 sort all edges in G by weight

 for each edge (u,v) {

 ds1 = find disjoint set of u

 ds2 = find disjoint set of v

 if ds1 != ds2 {

 add edge to MST list

 union(ds1, ds2) // merge 2 disjoint sets into 1

 }

 }

}

Hey - What are disjoint sets? What is find()? And union()?

Answer: Disjoint set is a collection of sets whose members don’t intersect.

We use a nifty representation of disjoint sets (an array) to efficiently determine if adding
an edge would create a cycle. A lot of people use disjoint sets...

en.wikipedia.org/wiki/Disjoint-set_data_structure

12

https://en.wikipedia.org/wiki/Disjoint-set_data_structure

Example:

Source: www.cs.usfca.edu/~galles/visualization/Prim.html

1) Run Prim’s

2) Run Kruskal’s

Then, turn the page.

13

https://www.cs.usfca.edu/~galles/visualization/Prim.html

Answer:

14

