Big-Oh notes

Prof Bill, Jan 2020

“Big O notation is a mathematical notation that describes the limiting behavior of a
function when the argument tends towards a particular value or infinity.”
- en.wikipedia.org/wiki/Big_O_notation

What function best describes the performance of your algorithm for N items?
/* my favorite chart of the course ¥/

Big-O Complexity

1::; /
N /
| / p—

0Oflogn)

500 ! —0(n)

400 ,§ / / =——0(nlogn)
J / / ——0[n"2)

S i o

Y | e0(n])

100 ” ; ,...-

0 T : 1] T 1 1 T 1] L i 1

(0] 10 20 30 40 50 60 70 80 90 100

Operations

Elements

Source:www.hackerearth.com/practice/notes/big-o-cheatsheet-series-data-structures-and-algorithms-with

-thier-complexities-1/

Seven performance categories are most common, for a problem of size = n:

O(1) - constant time

O(log(n)) - logarithmic time

O(n) - linear time

O(n log(n)) - quasi-linear or “n log n” time
O(n”*2) - polynomial time

O(2"n) - exponential time

O(n!) - factorial time

https://en.wikipedia.org/wiki/Big_O_notation
https://www.hackerearth.com/practice/notes/big-o-cheatsheet-series-data-structures-and-algorithms-with-thier-complexities-1/
https://www.hackerearth.com/practice/notes/big-o-cheatsheet-series-data-structures-and-algorithms-with-thier-complexities-1/

Formally, for O(f(n)) defines a function f(n) where:

running time <= k * f(n), for n > no0

k- fim)
.-f e ff

. running lime

' ———
ik s

n

For this Big-Oh, f(n) defines an asymptotic limit of our running time.

Constants, multipliers, and lower-order terms are ignored. Why? Because they are
insignificant compared to the performance function for large N.

Example: Ignore constants, multipliers, and lower-order terms.
f(n) = 5n? + 7n + 101 is O (n?)
Try: Each Big-Oh function above for (piddly) N=100...function dominates growth.

Try: What is Big-Oh for the array operations: add, get, remove?

Big-Oh is not program timing or running benchmarks. It is a theoretical estimate,

independent of specific program or computer.

Links:

= Another fun Big-OH summary, bigocheatsheet.com

-> Wikipedia summary, en.wikipedia.org/wiki/Big_O_notation

http://bigocheatsheet.com/
https://en.wikipedia.org/wiki/Big_O_notation

Sedgewick Algorithms

Read: Section 4.1 of Sedgewick Java text, introcs.cs.princeton.edu/java.

Read: Section 1.4 Analysis of Algorithms of Sedgewick algorithms text,
algs4.cs.princeton.edu.

Sedgewick’s stopwatch example is not Big-Oh. That’s benchmarking: write a program,
create some test cases, run them, and time the results.

Note: Sedgewick uses an important Java APl method at the heart of his stopwatch
code, introcs.cs.princeton.edu/java/stdlib/Stopwatch.java.html.

System.currentTimeMillis () ;
docs.oracle.com/javase/8/docs/api/java/lang/System.html

Big-Oh is a theoretical estimation of your algorithm’s performance. There are BIG
advantages to this over benchmarking:

Algorithm analysis, Big-Oh/ Benchmarking
Advantage
Algorithm on paper Must write a complete program

+ much less work/detail

Expected or worst case Must develop a suite of test cases
+ much less work
+ important bounds on performance

Analysis independent of environment Real world worries: CPU, operating
+ much less work system, language, network speed, etc
+ theoretical bounds are key

Important: How does Big-Oh justify all these shortcuts: see my fave chart on page 1.
The difference in Big-Oh functions as N gets large is profound!

Note: Big-Oh can be applied to other resources as well: memory, disk space, etc.

https://introcs.cs.princeton.edu/java/home/
https://algs4.cs.princeton.edu/home/
https://introcs.cs.princeton.edu/java/stdlib/Stopwatch.java.html
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html

Tilde approximations - throw away low-order terms that complicate formulas and
aren’t important as N gets large. Example:

O(N? + 7N) =~ O(N?)

Amortized analysis - spreading out the cost of an operation over a sequence of
operations. The classic example, ArrayList...resizing is O(1) because it happens once
for every N elements we add to the ArrayList:

In the resizing-array implementation of Bag, Stack, and Queue, starting from an
empty data structure, any sequence of N operations takes time proportional to N
in the worst case (amortized constant time per operation).

/* Sedgewick spends some time counting bytes...again, that is more benchmarking, not
algorithm analysis. This is important in improving a specific program, but isn’t important
to us in our study of Big-Oh. */

Sedgewick’s cheatsheet is fantastic, algs4.cs.princeton.edu/cheatsheet.

I'll only ask you about Big-Oh, and it is most important...but there are other “Bigs”.

Name Notation Notes

Big-Oh f(n) is O(g(n)) upper bound on performance
Tilde f(n) ~ g(n) equal to, asymptotically
Big-Omega f(n) is Q(g(n)) lower bound

Big-Theta f(n) is ©(g(n)) “tight”, upper and lower bound

https://algs4.cs.princeton.edu/cheatsheet/

| really like this Big-Oh summary. Look at the code frags.

Common orders of growth.

m NOTATION EXAMPLE CODE FRAGMENT

array access
Constant o(l) arithmetic operation op();
function call

binary search in a sorted array

Logarithmic O(log n) insert in a binary heap f“()é?';'_‘ -

1}
-

s i <= np 1= 2%1)

search in a red-black tree

seguential search

f InE 4 =07 -
Linear O(n) grade-school addition oroé?r;. i
BFPRT median finding ’
mergesort for (int 1 = 1; i <= n; i++)
Linearithmic O(nlogn) heapsort for (int j = i; j <= nj j = 2%)
fast Fourier transform op();
enumerate all pairs for (int i = @; i < n; i++)
Quadratic on?) insertion sort for (int j = i+1; j < n; j++)
grade-school multiplication op();

for (int i = @; 1 < n; i++)
for (int j = i+1; j < n; j++)
for (int k = j+1; k < n; k++)
op();

enumerate all triples
Cubic o) Floyo-\Warshall
grade-school matrix multiplication

ellipsoid algerithm for LP
Polynomial O(n°) AKS primality algorithm
Edmond's matching algorithm

enumerating all subsets
Exponential 909 enumerating all permutations
backiracing search

Source: algs4.cs.princeton.edu/cheatsheet

https://algs4.cs.princeton.edu/cheatsheet/

