
Big-Oh notes
Prof Bill, Jan 2020

“Big O notation is a mathematical notation that describes the limiting behavior of a
function when the argument tends towards a particular value or infinity.”

- en.wikipedia.org/wiki/Big_O_notation

What function best describes the performance of your algorithm for N items?
/* my favorite chart of the course */

Source:​www.hackerearth.com/practice/notes/big-o-cheatsheet-series-data-structures-and-algorithms-with

-thier-complexities-1/

Seven performance categories are most common, for a problem of size = n:

● O(1) - constant time
● O(log(n)) - logarithmic time
● O(n) - linear time
● O(n log(n)) - quasi-linear or “n log n” time
● O(n^2) - polynomial time
● O(2^n) - exponential time
● O(n!) - factorial time

1

https://en.wikipedia.org/wiki/Big_O_notation
https://www.hackerearth.com/practice/notes/big-o-cheatsheet-series-data-structures-and-algorithms-with-thier-complexities-1/
https://www.hackerearth.com/practice/notes/big-o-cheatsheet-series-data-structures-and-algorithms-with-thier-complexities-1/

Formally, for O(f(n)) defines a function f(n) where:

running time <= k * f(n), for n > n0

For this Big-Oh, f(n) defines an ​asymptotic limit​ of our running time.

Constants, multipliers, and lower-order terms are ignored. Why? Because they are
insignificant compared to the performance function for large N.

Example: Ignore constants, multipliers, and lower-order terms.

f(n) = 5n ​2​ + 7n + 101 is O(n ​2​)

Try: Each Big-Oh function above for (piddly) N=100...function dominates growth.

Try: What is Big-Oh for the array operations: add, get, remove?

Big-Oh is ​not​ program timing or running benchmarks. It is a theoretical estimate,

independent of specific program or computer.

Links:

➔ Another fun Big-OH summary, ​bigocheatsheet.com

➔ Wikipedia summary, ​en.wikipedia.org/wiki/Big_O_notation

2

http://bigocheatsheet.com/
https://en.wikipedia.org/wiki/Big_O_notation

Sedgewick Algorithms

Read: Section 4.1 of Sedgewick Java text, ​introcs.cs.princeton.edu/java​.

Read: Section 1.4 Analysis of Algorithms of Sedgewick algorithms text,
algs4.cs.princeton.edu​.

Sedgewick’s stopwatch example is ​not​ Big-Oh. That’s benchmarking: write a program,
create some test cases, run them, and time the results.

Note: Sedgewick uses an important Java API method at the heart of his stopwatch
code, ​introcs.cs.princeton.edu/java/stdlib/Stopwatch.java.html​.

System.currentTimeMillis();

docs.oracle.com/javase/8/docs/api/java/lang/System.html

Big-Oh is a theoretical estimation of your algorithm’s performance. There are BIG
advantages to this over benchmarking:

Algorithm analysis, Big-Oh/
Advantage

Benchmarking

Algorithm on paper
+ much less work/detail

Must write a complete program

Expected or worst case
+ much less work
+ important bounds on performance

Must develop a suite of test cases

Analysis independent of environment
+ much less work
+ theoretical bounds are key

Real world worries: CPU, operating
system, language, network speed, etc

Important: ​How does Big-Oh justify all these shortcuts: see my fave chart on page 1.
The difference in Big-Oh functions as N gets large is profound!

Note: Big-Oh can be applied to other resources as well: memory, disk space, etc.

3

https://introcs.cs.princeton.edu/java/home/
https://algs4.cs.princeton.edu/home/
https://introcs.cs.princeton.edu/java/stdlib/Stopwatch.java.html
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html

Tilde approximations​ - throw away low-order terms that complicate formulas and
aren’t important as N gets large. Example:

O(N​2 ​ + 7N) =~ O(N​2 ​)

Amortized analysis​ - spreading out the cost of an operation over a sequence of
operations. The classic example, ArrayList...resizing is O(1) because it happens once
for every N elements we add to the ArrayList:

In the resizing-array implementation of Bag, Stack, and Queue, starting from an
empty data structure, any sequence of N operations takes time proportional to N
in the worst case (amortized constant time per operation).

/* Sedgewick spends some time counting bytes...again, that is more benchmarking, not
algorithm analysis. This is important in improving a specific program, but isn’t important
to us in our study of Big-Oh. */

Sedgewick’s cheatsheet is fantastic, ​algs4.cs.princeton.edu/cheatsheet​.

I’ll only ask you about Big-Oh, and it is most important...but there are other “Bigs”.

Name Notation Notes

Big-Oh f(n) is O(g(n)) upper bound on performance

Tilde f(n) ~ g(n) equal to, asymptotically

Big-Omega f(n) is Ω(g(n)) lower bound

Big-Theta f(n) is Θ(g(n)) “tight”, upper and lower bound

4

https://algs4.cs.princeton.edu/cheatsheet/

I really like this Big-Oh summary. Look at the code frags.

Source: ​algs4.cs.princeton.edu/cheatsheet

5

https://algs4.cs.princeton.edu/cheatsheet/

