
Big-Oh intro
Prof Bill, Jan 2020

“Big O notation is a mathematical notation that describes the limiting behavior of a
function when the argument tends towards a particular value or infinity.”

- en.wikipedia.org/wiki/Big_O_notation

What function best describes the performance of your algorithm for N items?
/* my favorite chart of the course */

Source:www.hackerearth.com/practice/notes/big-o-cheatsheet-series-data-structures-and-algorithms-with

-thier-complexities-1/

Seven performance categories are most common, for a problem of size = n:

● O(1) - constant time
● O(log(n)) - logarithmic time
● O(n) - linear time
● O(n log(n)) - quasi-linear or “n log n” time
● O(n^2) - polynomial time
● O(2^n) - exponential time
● O(n!) - factorial time

1

https://en.wikipedia.org/wiki/Big_O_notation
https://www.hackerearth.com/practice/notes/big-o-cheatsheet-series-data-structures-and-algorithms-with-thier-complexities-1/
https://www.hackerearth.com/practice/notes/big-o-cheatsheet-series-data-structures-and-algorithms-with-thier-complexities-1/

Formally, for O(f(n)) defines a function f(n) where:

running time <= k * f(n), for n > n0

For this Big-Oh, f(n) defines an asymptotic limit of our running time.

Constants, multipliers, and lower-order terms are ignored. Why? Because they are
insignificant compared to the performance function for large N.

Example: Ignore constants, multipliers, and lower-order terms.

f(n) = 5n 2 + 7n + 101 is O(n 2)

Try: Each Big-Oh function above for (piddly) N=100...function dominates growth.

Try: What is Big-Oh for the array operations: add, get, remove?

Big-Oh is not program timing or running benchmarks. It is a theoretical estimate,

independent of specific program or computer.

Links:

➔ Another fun Big-OH summary, bigocheatsheet.com

➔ Wikipedia summary, en.wikipedia.org/wiki/Big_O_notation

2

http://bigocheatsheet.com/
https://en.wikipedia.org/wiki/Big_O_notation

