
Balanced tree notes
Prof Bill, Mar 2020

The goal of balanced trees: O(log n) worst-case performance. They do this by
eliminating the destructive case where a BST turns into a linked list.

Some “textbook” links:

➢ Morin, 9 Red-black trees, opendatastructures.org/ods-java/9_Red_Black_Trees.html

➢ Sedgewick algos 3.3 Balanced search trees, algs4.cs.princeton.edu/33balanced

Sections:

1. Why does balanced = log N?

2. B-trees, 2-3-4 trees

3. Red-black trees

4. AVL trees

5. Scapegoat trees

In general, we will learn the rules of each structure, and the insert and search
operations. We’ll punt on delete. Rationale: Time is limited. If you understand insert and
search, then you can figure out delete if you need it.

These notes are just a quick summary of each structure. I’ll have separate, detailed Prof
Bill notes™ of most/all of these guys.

thanks...yow, bill

1

http://opendatastructures.org/ods-java/9_Red_Black_Trees.html
https://algs4.cs.princeton.edu/33balanced/

1. Why does balanced = log N?

Important to understand why this “balanced stuff” works, O(log n) worst case.
● Insert and search ops never scour the whole tree, only 1 or 2 branches.
● In a balanced tree, those branches are guaranteed to have log(n) nodes.

Counter-example: Printing the tree (balanced or not) is O(n), each node is visited.

Terms:
➢ full binary tree - every node that isn’t a leaf has two children
➢ complete binary tree - every level except the last is full and all nodes are as far

left in the tree as possible

Key: Balanced tree algorithms are O(log n) because their trees are full/complete!

Example: Height = 4; num nodes = 15

In general, for a complete/full tree:

Height = log(num nodes); 4 = log(15)

num nodes = 2^(height); 15 = 2^4

Btw, let’s do the maths (for Joe K):

S is num nodes, n is height

count nodes at each level

S = 20 + 21 + 22 + … + 2(n-1)

2*S = 21 + 22 + 23 + … + 2(n-1) + 2(n)

subtract: 2S - S = S

S = -20 + 2(n)
S = 2n - 1

2

2. B-trees, 2-3-4 trees

I like Wikipedia here, actually:

➔ B-tree, en.wikipedia.org/wiki/B-tree

➔ 2-3-4 tree, en.wikipedia.org/wiki/2%E2%80%933%E2%80%934_tree

B-trees are the general case...nodes with N children.

We will study 2-3-4 trees. These have nodes with 2, 3, or 4 children.

Source: https://en.wikipedia.org/wiki/2%E2%80%933%E2%80%934_tree

Insert new nodes as a leaf, then split nodes that get too large.

Search is a little weird, but straightforward.

3

https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/2%E2%80%933%E2%80%934_tree
https://en.wikipedia.org/wiki/2%E2%80%933%E2%80%934_tree

3. Red-black trees

Again. Kudos to Wikipedia, en.wikipedia.org/wiki/Red%E2%80%93black_tree

The red-black rules are:

❏ Each node is either red or black.
❏ The root is black.
❏ All leaves (NIL) are black.
❏ If a node is red, then both its children are black.
❏ Every path from a given node to any of its descendant NIL nodes contains the

same number of black nodes.

Insert a new node as a leaf, then re-color or rotate to maintain our red-black properties.

Search is just like BST...but with the worst-case performance of O(log n).

Source: www.cs.auckland.ac.nz/software/AlgAnim/red_black.html

4

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://www.cs.auckland.ac.nz/software/AlgAnim/red_black.html

4. AVL trees

Wikipedia: en.wikipedia.org/wiki/AVL_tree

Quickly:

➢ An AVL tree is a self-balancing binary search tree (BST). It was the first such
data structure to be invented.

➢ The AVL tree is named after its two Soviet inventors, Georgy Adelson-Velsky and
Evgenii Landis, who published it in their 1962 paper "An algorithm for the
organization of information".

➢ The heights of the two child subtrees of any node differ by at most one; if at any
time they differ by more than one, rebalancing is done to restore this property.

➢ Search, insertion, and deletion all take O(log n) time in both the average and
worst cases!

/* AVL is pretty unpleasant to code */

5

https://en.wikipedia.org/wiki/AVL_tree

5. Scapegoat trees

Read: Morin 8 Scapegoat trees,
opendatastructures.org/ods-java/8_Scapegoat_Trees.html

Quick facts: 1) There is no animation for scapegoat trees. 2) I’ve never used them.

Here’s a better explanation than Morin (sigh), brilliant.org/wiki/scapegoat-tree.

● Unlike the red-black tree and the AVL tree, the scapegoat tree is an
unencumbered data structure. (no extra info per node, like color)

6

http://opendatastructures.org/ods-java/8_Scapegoat_Trees.html
https://brilliant.org/wiki/scapegoat-tree/

