## 2-3-4 Tree notes

Prof Bill, Mar 2020
I like Wikipedia here, actually:
$\rightarrow$ B-tree, en.wikipedia.org/wiki/B-tree
$\rightarrow$ 2-3-4 tree, en.wikipedia.org/wiki/2\�\�\�3\�\�\�4_tree
Read: Sedgewick Algorithms 3.3 Balanced Search Trees (btw, he covers 2-3 trees, not 2-3-4), algs4.cs.princeton.edu/33balanced

Animation: Select "B Trees"; this may be the best animation of all, www.cs.usfca.edu/~galles/visualization/Algorithms.html

Quickly:
In the binary trees we know and love, all nodes have 2 children.
B-trees are the general case, where nodes can have N children.
2-3-4 trees are B-trees that contain nodes with 2,3 , or 4 children.

## B-trees

Important: "Not to be confused with Binary tree"
Definition:
In computer science, a B-tree is a self-balancing tree data structure that maintains sorted data and allows searches, sequential access, insertions, and deletions in logarithmic time. The B-tree generalizes the binary search tree, allowing for nodes with more than two children. Unlike other self-balancing binary search trees, the B-tree is well suited for storage systems that read and write relatively large blocks of data, such as discs. It is commonly used in databases and file systems.

## 2-3-4 trees

We'll focus on 2-3-4 trees, which are one flavor of B-tree.

## Definition:

In computer science, a 2-3-4 tree (also called a 2-4 tree) is a self-balancing data structure...where every node with children (internal node) has either two, three, or four child nodes:

- a 2-node has one data element, and if internal has two child nodes
- a 3-node has two data elements, and if internal has three child nodes
- a 4-node has three data elements, and if internal has four child nodes


2-node


3-node


4-node

So, the biggest node has 3 values and 4 children. Bigger than that, and the node splits.

## Properties:

$>$ Every node (leaf or internal) is a 2-node, 3-node or a 4-node, and holds one, two, or three data elements, respectively.
$>$ All leaves are at the same depth (the bottom level).
$>$ All data is kept in sorted order.

Since our tree is always balanced, then search, insert, and delete are all $\mathbf{O}(\log \mathbf{n})$ !
2-3-4 trees are an isometry of red-black trees, meaning that they are equivalent data structures.

Sedgewick covers 2-3 trees. (shrug) Can you figure out the difference between these and 2-3-4 trees?

## Insertion pseudocode

```
insert( key)
    add new key to an existing leaf node, ala BST
    L1: if adding to 4-node (too large)
        split and push value up to parent
        if parent is null, then make node root
        goto L1 for parent
```

