
Chapter	7	
In	this	section,	we’ll	take	the	first	steps	toward	the	final	profile	by	making	a	page	to	display	a	
user’s	name	and	profile	photo	
	
7.1	Showing	Users	
if	Rails.env.development?		
	 -	restricts	the	debug	information	to	the	development	environment	
	 -	only	true	when	in	development	environment	
Rails	comes	equipped	with	3	environments	

-	test:	for	testing	application		
-	development:	default	environment	for	the	Rails	console,	for	developing	on	workspace	
-	production:	how	application	runs	on	live	server	

Want	to	run	a	console	in	a	different	environment	ex:	to	debug	a	test?	à	$	rails	console	test	
	
Sass	mixins	allows	a	group	of	CSS	rules	to	be	packaged	up	and	used	for	multiple	elements.	
	
REST:	Representational	State	Transfer,	representing	data	as	resources	that	can	be	created,	
shown,	updated,	or	destroyed	which	correspond	to	the	four	fundamental	operations	POST,	GET,	
PATCH,	and	DELETE	
	 Using	to	interact	with	users	as	a	resource,	to	implement	users	database	

resources	:users	à	provides	application	with	all	actions	needed	for	a	RESTful	users	
resource	including	a	routes	for	generating	URLs	

	
debug	can	help	us	understand	what’s	going	on	in	our	application	

(byebug)	is	a	more	direct	way	to	get	debugging	information,	powerful	method	for	
tracking	down	application	errors	

	
Gravatars	are	a	convenient	way	to	include	user	profile	images	without	going	through	hassle	of	
image	uploading/cropping/storage	à	gravatar_for	helper	function	to	return	Gravatar	image	
	 	
7.2	Signup	Form	
form_for	helper	method:	builds	a	form	using	an	Active	Record	object’s	attributes	
	 name:	allow	Rails	to	construct	initialization	hash		
	 form:	Rails	creates	the	form	tag	using	the	@user	object	because	every	Ruby	object		
	 knows	its	own	class,	Rails	figures	out	that	@user	is	of	class	User		
	 post:	method	to	construct	a	form	for	creating	a	new	object	
	

<form action="/users" class="new_user" id="new_user" method="post">
	
	
	
	
	

7.3	Unsuccessful	Signups	
Initializing	entire	params	hash	is	dangerous	because	it	arranges	to	pass	to	User.new	all	data	
submitted	by	a	user.	Would	allow	any	user	of	the	site	to	gain	administrative	access.	
	 How	do	you	solve	this	problem?		
	 	 Use	strong	parameters	in	the	controller	layer.	This	allows	to	specify	which		
	 	 Parameters	are	required	and	which	ones	are	permitted.	
	
empty?:	method	returning	true	for	an	empty	object	and	false	otherwise	
any?:	method	returning	true	if	there	are	any	elements	present	and	false	otherwise	
pluralize:	text	helper	that	takes	an	integer	argument	and	then	returns	the	number	with	a	
properly	pluralized	version	of	its	second	argument	
	
7.4	Successful	Signups	
Redirecting	

- redirect_to	@user	
- redirect_to	user_url(@user)	

	
flash	method	to	display	a	temporary	message,	Bootstrap	CSS	supports	styling	for	4	such	classes	

- :success	key	for	a	message	indicating	a	successful	result	
- :danger	key	for	a	message	indicating	a	failed	result		
- :info:	(More	in	chapter	11)	
- :warning:	(More	in	chapter	11)	

	
7.5	Professional	Grade	Deployment		
SSL:	Secure	Sockets	Layer,	fixes	a	potentially	serious	security	flaw	in	our	application,	encrypts	all	
relevant	information	before	it	leaves	the	local	browser,	easy	to	implement	site-wide,	makes	our	
application	immune	to	the	critical	session	hijacking	vulnerability	discussed	later	in	chapter	9	
	 How	to	enable?	
	 	 Uncomment	a	single	line	in	production.rb	
	 	 Set	the	config	variable	to	force	the	use	of	SSL	in	production	
 # Force all access to the app over SSL, use Strict-Transport-Security,
 # and use secure cookies.
 config.force_ssl = true

	 	 	
Puma:	an	HTTP	server	that	is	capable	of	handling	a	large	number	of	incoming	requests.	

1. Include	the	puma	gem	in	our	Gemfile	(default	so	we	can	skip	this	step)	
2. Replace	the	default	contents	of	the	file	config/puma.rb	with	the	configuration	shown	

in	Listing	7.37	(Comes	from	Heroku	documentation,	don’t	need	to	understand	it)	
3. Make	a	Procfile	to	tell	Heroku	to	run	a	Puma	process	in	production,	created	in	

application	root	directory	
	

