
CSC 210 Program #5
Project Corndog Ɣ Feb 20, 2008

Logistics
Program #5 Project Corndog is:

x Worth 10 points, or 10% of your grade
x Due Saturday Mar 8, 2008 (noon)
x Covers graphs, breadth-first search, depth-first search, spanning trees,

shortest path, backtracking, sets, recursion and/or stacks, and more!

Description

In Project Corndog, we will write software to play with mazes. Oh, I don’t know…
like this little guy:

This is called a “perfect maze” because it has one solution; it has a path to each
“cell”, or square, within the maze; and it has no borderless, open spaces.

You can almost close your eyes and imagine that this maze is a grid (rows and
columns) of square cells. The example above has 5 rows and 10 columns. Yes?
Each cell can have a wall on the top, right, bottom and left.

In fact, you can model this maze as a graph. Cells are vertices. An edge exists
between cells that do not have a wall between them… because they are
“connected.” (At this point, someone raise their hand and ask me to draw this on
the board. Thanks.)

In fact (again), if a perfect maze is as I described it with one path to each cell,
then you would call that a spanning tree of the graph. Stay tuned.

CSC 210 1 Program #5

Project Corndog steps (pretty much in order of attack):

1. Design your data structures/classes to represent a maze
2. Draw a maze.
3. Read and write mazes to a file.
4. Generate a maze.
5. And finally, solve a maze.
6. Do your flair

Piece a cake. Gulp.

1. Design

Let’s use the standard Java Collections interface/abstract class two-step. Here’s
my UML, sort of:

MazeInt

AbstractMaze

MyMaze

So, MazeInt is an interface, defining the maze contract. AbstractMaze is an
abstract class that implements some of the interface methods without actually
defining a data structure for the maze. Then, MyMaze does the heavy lifting.

A couple of other classes worth mentioning:

x Cell – represents a square in the maze

x MazeFactory – creates mazes from a file or generates them out of mid-
air, with the greatest of ease

x MazePanel – put your maze in a handy panel surrounded by some GUI
critters and paint it

Please don’t change MazeInt. You can add to AbstractGraph if you like. If
the MazeInt contract is cramping your style for some reason, let me know and
we’ll consider changing/improving it.
Please note that I have not defined the data structure or approach you will use to
represent your maze. That’s up to you. I’m not about to tell you what to do on the
last program here. Gasp.

CSC 210 2 Program #5

2. Draw
I think this is a pretty easy step. I just set my cell size (32, 40, whatever pixels
square). Then, go cell by cell and draw its walls.

foreach row in your maze
 foreach column in this row
 draw the cell walls at (row, col)

You can spruce up this drawing to make it as pretty as you like.

3. Maze Files
Project Corndog should read and write maze descriptions to/from a file. This way
we can exchange fun mazes and solve them.
I have a (gross) maze file format. I tinkered with the idea of using XML, and then
I got over it. The good news is that I have skeleton code for you to read the files.
Some links:

x csc210_maze_file_format_description.txt – text description of our files

x test01.txt – a small example file
I’ll put my file reader skeleton on the k: drive.

4. Generate
While you are setting up your scaffolding (steps 1-3), you should be thinking
about the task of automatically creating and solving mazes.
If your maze can be represented as a graph, then a perfect maze can be
represented as a spanning tree on that graph. So, how can you create a
“random” spanning tree? Three (similar) ways are depth-first, Prim’s spanning
tree, and Kruskal’s spanning tree.
A depth-first approach starts at a random cell in the graph and then grows the
spanning tree like a crystal from there. Like this:

1. Start at a random cell
2. Choose for a random neighbor cell you haven't visited yet
3a. If you find one, connect to it (or knock down its wall)
3b. Else try a previously visited cell (on a stack?)
4. Repeat steps 2 and 3 until you have visited (and connected to) each cell

In our book, Prim’s algorithm is used to find a minimum spanning tree. Well, here
all our edges have the same weight, so we just want a spanning tree. You can
still use Prim’s though by randomly adding an edge connected to the current set,
rather than adding the smallest edge. Ditto for Kruskal’s algorithm.
Please implement either Prim’s or Kruskal’s algorithm. You can do depth-first as
well, if you want.

CSC 210 3 Program #5

file:///Users/williamkrieger/Documents/noctrl/w_drive/archive/c2008_01_csc210/program05/csc210_maze_file_format_description.txt
file:///Users/williamkrieger/Documents/noctrl/w_drive/archive/c2008_01_csc210/program05/test01.txt

5. Solve
Actually, there are two maze programs described in our book:

x Pages 388-392 show a recursive/backtracking method of solving a maze

x Pages 655-658 show a breadth-first search method of solving a maze. I
recommend this approach for your maze solver as well. I might, however,
recommend using a stack rather than recursion, but that’s up to you.

The book’s mazes are not perfect. He talks about how the first approach with
backtracking might not find the best (shortest) solution, whereas the second
approach will. Our mazes are perfect, so there is only one solution. I’d love to
throw a non-perfect maze at you though… we’ll see.
One interesting design decision that you have: do the breadth-first search directly
on your maze structure, or convert it to a more conventional graph data structure
and solve it there. Sort of like this:

1. Convert your maze to a graph (cells adjacent if no wall between them)
2. Do your breadth-first search on the graph.
3. Write your solution back onto your maze (color/mark cells on solution path).

It’s up to you.

6. Flair
“I do want to express myself, okay.

And I don't need 37 pieces of flair to do it.”

- Waitress in “Office Space”

There are so many fun flairs you can add to this project. Just some:

x Add GUI and data structure support so that you can show generating
and/or solving a maze, step by step. That’s cool!

x Make your maze algorithms and data structures more efficient. I can give
you a handout on handling disjoint sets more efficiently.

x Generate and solve non-perfect mazes or mazes of different shapes.

x Output your maze as a JPG. There’s code from a previous program
somewhere around here to help you do this.

Of course, the best flair is always something you came up with on your own and
you feel passionate about it.

7. Special Corndog Notes
There’s lots of fun (and scary) stuff on mazes out there on that internet. I have no
problem with you looking at other mazes and algorithms. Indeed, I would love to
see everyone do some searching and then post a comment/link or two on the
class blog! I am ever the optimist. I may even post a couple ditties myself.

CSC 210 4 Program #5

Please be aware, however, that copying code from the internet (or anyone else)
is considered plagiarism. Get algorithm ideas and Java help from the internet
and others, but do your own coding. Any instances of plagiarism get bumped up
to the Dean.
Some applicable bromides: start early; think, then code; run faster.
I’m here if you want help: wtkrieger@noctrl.edu

Grading

I’ll be honest. On this final big-money program, I expect pristine design, code,
documentation, and results. Anything otherwise will be judged harshly. Go:

1. Your README file – describing the state of your program
2. Your Net Beans folder – including your Java source code, class files, etc.
3. Your Javadoc – generate using the “Build/Generate Javadoc” menu
4. Your applet – create a web page at w:/index.htm with an Applet of one of

your favorite trees. Please include a link to your README and Javadoc.
5. Your printout – You do not have to turn in code for Project Corndog. I’ll peek

at your code on the k: drive.

Special deliverables for Project Corndog:

6. Email me your maze – Email me a maze file that you have generated by
noon on Wednesday March 5, 2008. Please use our CSC 210 maze file
format. I will collect these and place them on the k: drive for all to enjoy.

7. Print your solutions – Print your solutions to each of the mazes posted on
the k: drive. You can use <ALT><PrintScreen> to copy your solution to the
cut-paste buffer. Then paste it somewhere like Word and print it out. Or,
perhaps your flair will be to save maze solutions to a JPG file.

Start early and have fun with this one.

one deca-point… yow, bill

Additional Notes
I’ll post additional notes directly on the blog.

CSC 210 5 Program #5

mailto:wtkrieger@noctrl.edu

	CSC 210 Program #5
	Logistics
	Description
	1. Design
	2. Draw
	3. Maze Files
	4. Generate
	 5. Solve
	6. Flair
	7. Special Corndog Notes

	Grading
	Additional Notes

